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CHAPTER 17

Speeding Up Transformers

In Chapters 15 and 16, we built all kinds of transformers, from classifiers, translators
and chatbots, to vision and multimodal transformers. While transformers are incred-
ibly versatile and powerful, they are far from perfect. In particular, they can be very
slow, especially when processing long input sequences.

Luckily, many techniques have been developed to speed up transformers of any size:

To speed up decoding in generative transformers, we will use key/value caching
and speculative decoding, then we will take of a quick look at several approaches
to parallelize text generation.

To accelerate multi-head attention (MHA), which is one of the most computa-
tionally expensive components of transformers, we will look at sparse attention,
approximate attention, sharing projections, and FlashAttention.

To speed up gigantic transformers of up to trillions of parameters, we will discuss
mixture of experts (MoE).

To train large transformers efficiently, we will discuss parameter-efficient fine-
tuning (PEFT) using adapters such as Low-Rank Adaptation (LoRA), activation
checkpointing, sequence packing, gradient accumulation, and parallelism.

Another way to speed up a transformer is to make it smaller. This
can be done using reduced precision and quantization, which are
discussed in Appendix B.

We have a lot on our plate, so let’s get started: we will start by focusing on accelerating
the decoding process in generative transformers.




Faster Decoding at Inference Time

In decoder-only and encoder-decoder models, the decoder generates one token at a
time at inference time: to generate 1,000 tokens, it must be called 1,000 times. This
is not only computationally expensive, it’s also tricky to parallelize because each new
token depends on the previous ones: its a sequential generation process. That said,
there are ways to speed up the decoding process, starting with caching.

Key/Value Caching

As we saw in Chapter 15, each attention head in a multi-head attention (MHA) layer
computes the scaled dot-product attention equation (Equation 15-1): Attention(Q, K,
V) = softmax(QKT / \/d_k)V, where Q, K, and V are the query, key, and value matrices,
respectively, and d, is the key’s dimensionality. In a self-attention layer, the query, key,
and value are all different projections of the MHA layer’s input sequence.

The i row in each matrix is a projection of the i input token representation. Since
decoders use masked self-attention layers, the i input token representation is only
influenced by tokens 1 to i: it’s a causal model (i.e., the future has no influence on the
past). As a result, appending a new token i + 1 to the end of the input sequence will
not affect rows 1 to i in matrices Q, K, and V, it will only append a new row to each
of them. Great! We can cache these matrices, computing and appending only a single
new row at each generation step.

In fact, we only need to cache K and V, no need to cache Q. Indeed, if you look
closely at the scaled dot-product equation, you will see that the last row of the output
depends on the full matrices K and V, but only on the last row of Q. Since were only
interested in the output for the last token, we only need to compute the last row of
the output matrix at each generation step, which means we only need the last row of
Q: no cache needed.

So how does key/value caching (KV caching) work exactly? Well, the first time we
call the decoder, feeding it the initial prompt sequence containing tokens 1 to i, the
decoder works normally, except the K and V matrices in all attention heads across
all MHA layers are saved to a cache in memory (see Figure 17-1). This is called the
prefill stage. Each of these K and V matrices has i rows (one per token). The decoder
outputs a sequence containing its next-token predictions for tokens 1 to i. We only
care about the last predicted token, since that’s the new token i + 1.

2 | Chapter 17: Speeding Up Transformers
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Figure 17-1. Key/value caching: the first step is normal but caches all key and value
matrices; subsequent steps process only the last generated token, reusing the cached
matrices and appending one row for the new token

Now when we call the decoder again to generate the next token—this is called the
decoding stage—we only feed it the new token i + 1: there’s no need to feed it tokens 1
to i since the cached K and V matrices already contain the rows for tokens 1 to i. In
each MHA layer, the input—a single-token—is projected three times, which produces
three single-row matrices: a single-row matrix Q, a second single-row matrix which
is appended to the cached matrix K, and a third single-row matrix which is appended
to the cached matrix V. The Q matrix contains a single row, but the updated matrices
K and V now contain i + 1 rows each. We are finally ready to compute the scaled
dot-product equation, and the output is once again a single-row matrix. After going
through all layers, the decoder predicts a single token: the new token i + 2. This same
process can be repeated for each new token after that.

KV caching allows us to generate new tokens with much less compute than the naive
approach we implemented in Chapter 15 where we repeatedly fed the whole growing
sentence back to the decoder. Even with KV caching, each new token takes longer
and longer to generate because the K and V matrices keep growing, but at least it’s a
linear increase rather than a quadratic one. Note that generating a sequence of length
L, with KV caching still takes O(L,*) time, since the sum of a linearly increasing
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quantity is quadratic: 1 + 2 + 3 + ... + L, = L (L, + 1)/2. That said, quadratic is better
than cubic!

Storing the KV cache in GPU RAM can be a challenge, not only
because of its size, but also because sequences have variable lengths,
leading to memory fragmentation and frequent costly reallocations.

\ PagedAttention, introduced in the vLLM toolkit, addresses this by
storing the KV cache in fixed-size memory pages, inspired by
virtual memory systems. This makes batching more efficient and
avoids wasting memory.

To implement KV caching using the Hugging Face Transformers library, you gen-
erally don't need to do anything at all: most decoder-only and encoder-decoder
models support KV caching out of the box for the decoder, and the generate()
method uses KV caching by default. Under the hood, the generate() method sets
use_cache=True when calling the model, and it also sets the past_key_values argu-
ment to a cache object. Upon the first call, the cache is empty so the decoder works
normally and stores the key and value matrices in the cache. Upon subsequent calls,
the decoder only processes the last input token, using and updating the cache as we
discussed earlier.

The default cache class used by the generate() method is trans
formers.DynamicCache which is well suited for the general case,
but there are other cache classes for special use cases (e.g., when
using sparse attention): see https://homl.info/kvcache for more
details.

Now let's move on to another common technique to speed up decoding: speculative
decoding.

Speculative Decoding

Speculative decoding, also known as assisted generation, was proposed by Google
researchers in 2022."! They observed that most tokens are fairly easy to predict: for
example, in the sentence “Once upon a time there lived a pony”, most words can
easily be predicted given the previous words, except for “Once” and “pony”. So why
not use a smaller and faster model to generate the easy tokens, and a larger, slower
but smarter one for the hard ones? Unfortunately we don’t know ahead of time which

1 Yaniv Leviathan et al., “Fast Inference from Transformers via Speculative Decoding’, arXiv preprint
arXiv:2211.17192 (2022).
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tokens will be easy or hard, so the authors proposed the following technique (see
Figure 17-2):

At each generation step, we pass the context containing tokens ¢ to ¢, to the small
model—called the draft model (or the assistant model)—and we make it generate
a sequence of n additional tokens d,,, to d,,,, one token at a time. This additional
sequence is called the draft. Generating the draft is fast since the draft model is
small. Note that we generally use KV caching alongside speculative decoding, so
we really only pass one token at a time to the small model, but to simplify the
explanations I'll pretend we’re not using KV caching.

o Then we give the whole sequence (context plus draft) to the large model, called
the target model. This includes tokens c,, ..., ¢, d,yy ..., d,, (When using KV
caching we only need to pass ¢, d,,,, ..., d,,,,). This step is also fast since the target
model can process all the tokens in parallel, rather than sequentially.

o For each input token, the target model outputs tokens o, to o,,, where the output
token o; is the predicted next token for position i + 1, assuming that all the previ-
ous tokens are correct. So we must now verify that the draft tokens are indeed
correct: to do so, we check whether d; matches o, ;, for every position i from t +
1 to t + n. If they are all correct, that’s great, we can safely use all the draft tokens
d,,, to d,,,, since they match what the target model predicted, and we can even
append the output token o,,, since it’s the target model’s prediction for position
t + n + 1. We have now generated n + 1 tokens in total, using only # steps with
the draft model and a single step with the target model. Most importantly, we
have the same result as if we had run the target model to generate the n + 1 new
tokens.

o However, what if some of the draft tokens are incorrect, meaning they don’t
match the target model’s predictions? Well, if d, is the first incorrect draft token
(e.g., token “I” in the figure), then the corresponding output token and all output
tokens located after it are useless: indeed, the assumption that all previous tokens
are correct is invalid anywhere after the bad draft token d,. However, we can still
safely use the draft tokens up to this point (e.g., “DEF”), as well as the last valid
output token o, , (e.g., “G”). The worst case is when the very first draft token d,,,
is incorrect, but even in this case we still get at least one new token: o, (i.e., the
prediction for position ¢ + 1).

Faster Decoding at Inference Time | 5
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Figure 17-2. Speculative decoding: the draft model generates a draft sequence and the
target model verifies it

But wait! This process only works if we are using greedy decoding, always picking the
token with the largest logit. However, as we saw in Chapter 15, it’s usually preferable
to sample tokens randomly (typically using the probability distribution computed
using the softmax of the logits divided by the temperature), as this generally produces
nicer text, with less risk of weird repetitions. This means that the target model should
sometimes accept tokens that are not its first choice, as long as they are not too
bad. Ideally, we would like the token distribution using speculative decoding to be
identical to the token distribution using only the target model. Luckily, it turns out to
be possible! The authors proposed the following sampling strategy, named speculative
sampling, and proved mathematically that it yields the same token distribution as the
target model’s distribution (see the paper’s appendix A.1. for the proof). Here’s how it
works:

« When generating the draft token at position i, we run the draft model to compute
the probability distribution q;(x) over the possible next tokens (x), and we sample
one of them randomly, denoted d..

o Once we have generated a draft sequence, we can run the whole sequence
(prompt plus draft) through the target model to compute the probability distri-
bution p,(x) over the possible next tokens x, for each position i. However, this
time we don’t sample the output tokens just yet.

o Next, for each draft token d;, we accept the token if q(d;) < p,(d,). However,
if q((d;) > p{d;) then we only accept the token with probability p(d) / q.(d)),
otherwise we reject it.

 Anytime a draft token is accepted, we simply move on to the next draft token. If
all draft tokens are accepted, then we can sample one more token for free from

6 | Chapter17: Speeding Up Transformers



the last probability distribution output by the target model. We now have n + 1
new tokens.

o However, if a draft token d, is rejected, then we immediately stop iterating and
reject all the draft tokens at positions i > k as well. We can still sample one last
token for free from the target model, but this time using a slightly adjusted prob-
ability distribution p’,(x) = max(0, p/(x) - q,(x)) / s, where s, is a normalization
constant, chosen so the probabilities add up to one. This adjustement ensures
that we don’t oversample the tokens that the draft model can sample directly.

You might be wondering how long the draft sequences should be? If theyre too
short then they won't provide much speed up, if any, but if theyre too long, most
draft tokens will be dropped, wasting compute both when generating the draft tokens
and when verifying them. The Hugging Face Transformers library supports several
strategies to choose the draft length (also called the speculative lookahead or SL):

o Use a constant draft length: this is a hyperparameter you can tune.

» Use a basic heuristic: if all draft tokens are accepted during one generation
step, then increase the length of the draft in the next generation step, otherwise
decrease it.

o Use dynamic speculative decoding: keep generating draft tokens until the draft
model’s confidence drops below a given threshold (i.e., the draft token’s estimated
probability is too low). This is the default strategy.

To implement speculative decoding using the Hugging Face Transformers library,
you just have to pass the draft model to the generate() method using the assis
tant_model argument. You can optionally set the draft model’s confidence threshold
for dynamic speculative decoding:

from import AutoModelForCausallLM, AutoTokenizer

target_model = AutoModelForCausallLM.from_pretrained("facebook/opt-350m",
device_map="auto")

draft_model = AutoModelForCausallLM.from_pretrained("facebook/opt-125m",
device_map="auto")

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

prompt = "Once upon a time there lived"

inputs = tokenizer(prompt, return_tensors="pt").to(target_model.device)

outputs = target_model.generate(**inputs, max_new_tokens=100, do_sample=True,

temperature=1, assistant_model=draft_model)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)

2 “Dynamic Speculation Lookahead Accelerates Speculative Decoding of Large Language Models”, arXiv pre-
print arXiv:2405.04304 (2024).
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The target and draft models must be based on the same tokenizer
or else you will get an error. If you really know what you are doing,
you can set the tokenizer and assistant_tokenizer arguments

\ when calling the generate() method, but beware: if the vocabula-
ries are different, the assistant’s suggestions will likely be terrible,
slowing down text generation.

How much will speculative decoding help? Well, first it depends on the pair of
models: if the draft model is not much faster than the target model, everything could
actually be much slower! So the draft model should be small and fast. But not too
small, or else it will be too approximate, and the target model will reject most of the
draft tokens, so there will be no speed up at all—quite the contrary. In short, you
have to experiment with various draft models until you find the right one for your
target model. As a rule of thumb, the best draft model will typically be 10 to 20 times
smaller than the target model.

The speed up also depends on the task: easier tasks will get more boost since the draft
model will produce better drafts. For example, Hugging Face researchers got a 1.8x
speed up on a summarization task using OPT-6.7B by Meta as the target model and
OPT-125M as the draft model, but the speed up was only 1.2x on an open-ended
generation task.

The draft-and-verify approach is not the only way to parallelize decoding; there are
many more. Let’s discuss the main approaches.

Main Approaches to Parallelize Decoding

A survey published by Lingzhe Zhang et al. in August 2025’ lists over 130 papers that
propose various ways to parallelize text generation. The authors grouped these papers
into six categories:

Draft and verify
This includes speculative decoding and multiple variants.

Decompose and fill
The idea is to break the problem into independent tasks, then tackle these tasks
in parallel. For example, given the prompt “Tell me 10 chicken jokes”, the LLM
can be run in parallel to generate each joke. Similarly, given the prompt “Which
of these words come from French: mayor, state, cuisine, ...”, each word can be
processed in parallel. Lastly, given the prompt “Tell me a bedtime story”, the LLM

3 Lingzhe Zhang et al., “A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language
Models”, arXiv preprint arXiv:2508.08712 (2025).
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can first generate the storyline, then write all chapters in parallel based on the
storyline.

Multiple token prediction (MTP)
In this approach, the LLM is trained or fine-tuned to generate multiple tokens
at a time, producing a draft that it can then verify just like with speculative
decoding: no need for a draft model. One way to do this is to append special
lookahead tokens at the end of the prompt: for example, if the prompt is “Once
upon’, then we might feed the model the sequence “Once upon <lookahead>
<lookahead> <lookahead>". If the LLM is fine-tuned to predict the next tokens
whenever it sees the lookahead token, it might predict “upon a time there was’,
which it can then verify. The more accurate its predictions, the greater the speed

up.

One-shot generation
One-shot models produce the output in a single parallel step. This is extremely
fast, but since all generated tokens are independent, it often leads to repetitions,
missing words, and incoherence. Various techniques can be used to improve the
quality of the output, for example by first producing a template, then feeding it to
the model when producing the final output.

Masked generation
The model starts with a fully masked sequence, and gradually predicts some
of the words. At each generation step, it predicts multiple masked tokens and
refines some of its previous predictions, gradually improving coherence and
fixing errors.

Edit-based refinement
An initial quick draft is gradually improved by an editor model, trained to edit
the text using insertions, deletions, or substitutions in parallel across the whole
sequence.

Dynamic Batching and In-Flight Batching

If your service is popular enough to receive many requests per second, you will want
to look into dynamic batching: instead of processing requests immediately as they
arrive, you queue them and process them by batch at frequent intervals. Increasing
the batch size will better utilize the GPU and result in a higher throughput, but it will
also increase the average wait time in the queue, increasing latency. So ideally, you
want to adjust the batch size and frequency dynamically, depending on the incoming
traffic. This technique works for all neural networks, not just LLMs.

With LLMs, you can also use a request scheduler that groups requests of similar
lengths, reducing the need for mask tokens to pad shorter sequences. Or you can
go even further and implement in-flight batching (also called continuous batching): at

Faster Decoding at Inference Time | 9



each generation step, new requests join the batch, and completed requests leave it. As
a result, each generation step produces tokens for different positions depending on
the instance (e.g., it might generate the first token for a request and simultaneously
generate the third token a couple others, and so on). This removes the need for mask-
ing entirely, improves GPU utilization, and reduces the risk of long requests blocking
short ones. Moreover, this approach gives you more granularity with scheduling: for
example, if a request is taking too long to generate, the scheduler can temporarily
place it in the queue while other requests are being processed.

In-flight batching is implemented by several libraries and toolkits, including Hugging
Face Text Generation Inference (TGI), vLLM, TensorRT-LLM, SGLang, and others.

So far we have focused on speeding up decoding, but there are many other ways to
speed up a transformer, including encoder-only transformers. Let’s start by speeding
up the multi-head attention layers.

Speeding Up Multi-Head Attention

The MHA layers are a key component of transformers. If we can accelerate them,
then we can speed up transformers considerably. Looking back at the scaled dot-
product attention equation, Attention(Q, K, V) = softmax(QKT / M)V, the most
computationally expensive part is QKT: this matrix multiplication computes one score
for every query/key token pair. If L, and L, are the lengths of the query and key, then
the result is an L, x L, matrix. In a self-attention layer, the query and the key have
the same length (L, = L,) since they are two projections of the same sequence, so QK"
is a square matrix containing L,? cells: the number of cells grows with the square of
the key length, which is why compute scales quadratically with the sequence length,
making it impractical to feed a very long document to a transformer.

Luckily, there are various ways to speed up MHA:

o Drastically reducing the number of key tokens that each query token pays atten-
tion to: this is called sparse attention.

o Tweaking the scaled dot-product attention equation to get a quick approximation
rather than the exact result: this is approximate attention.

« Simplifying the MHA architecture by sharing projections such as K and V across
attention heads.

o Taking full advantage of the hardware architecture, using FlashAttention.

Let’s go through each of these, starting with sparse attention.

10 | Chapter17: Speeding Up Transformers



Sparse Attention

In a standard masked MHA layer, each query token attends to every single key token
up to its position (see the lefthand side of Figure 17-3). That’s a lot of tokens to
attend to: why not pay attention to only a subset? We will look at some of the most
influential architectures based on this idea: Sparse Transformer, Longformer, BigBird,
and Routing Transformer.

Sparse Transformer

The Sparse Transformer architecture was introduced by OpenAl researchers in a 2019
paper:* it's a decoder-only architecture where half of the attention heads can only
attend to n local tokens (e.g., the last 256 tokens), while the other half can only
attend to every n tokens globally. This number # is called the stride, and the authors
recommended choosing a value close to the square root of the maximum sequence
length, for maximum efficiency. The authors proposed two variants:

o Strided sparse attention (see the center of Figure 17-3), where both the local and
global masks slide smoothly along with the query token. The authors found that
this variant works best with images and data with a clear periodic structure that
aligns well with the stride.

o Fixed sparse attention (see the righthand side of Figure 17-3), where the query
is split into fixed blocks of n tokens each, and the local mask is limited to the
query’s block, while the global mask includes the last key token of each block.
This variant is preferred for text and other data without a clear periodicity.

4 Rewon Child et al., “Generating Long Sequences with Sparse Transformers”, arXiv preprint arXiv:1904.10509
(2019).
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Figure 17-3. Regular causal attention mask (left), and two variants for the Sparse
Transformer (center: strided, right: fixed). A colored cell indicates that the query token
can attend the key token. In the Sparse Transformer, half of the attention heads use the
blue mask while half use the dark purple mask.

With this approach, the computational complexity is drastically reduced: each query
token can only attend to up to # local tokens, plus up to i / n global tokens, where
i is the query token’s position. For example, when using a window size of n = 256, a
sequence of 10,000 tokens only requires computing about 5 million attention scores
in total, whereas regular attention would require computing 100 million: that’s a 20x
speed up! More generally, this architecture scales with O(Lgy/Limax), which is much
better than O(L,L,).

However, this speed up does come at a cost: information has to travel through global
tokens to reach nonlocal tokens, which can cause information bottlenecks. In practice,
this means that some critical nonlocal information may sometimes be missed. For
example, if the conclusion of an essay must refer to a particular detail in the text,
the reference may be inaccurate. The Sparse Transformer architecture is best for tasks
such as summarizing or classifying long documents, but it can struggle on tasks such
as textual entailment or reasoning, where attention to detail is often critical.

We can do better! Let’s now turn to the Longformer architecture.

Longformer

In April 2020, researchers from the Allen Institute for AI proposed the Longformer
(or long-document transformer), another transformer architecture based on sparse
attention. As opposed to the Sparse Transformer, Longformer has an encoder-only
architecture (based on RoBERTa), so its attention masks allow each query token to
attend to key tokens located after it, making these masks symmetrical about the
main diagonal (see Figure 17-4). The paper also introduced the Longformer Encoder-
Decoder (LED), with an architecture similar to the original Transformer, but using
sparse attention in the encoder.

12 | Chapter17: Speeding Up Transformers
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The Longformer is based on a simple sliding window for local attention, similar
to local attention in strided sparse attention (except it is centered on the query
token’s position). The width of the window is quite large (e.g., 512 tokens), so the
Longformer does not provide any benefits for small documents.

Most importantly, the Longformer uses a fixed number of global tokens, chosen with
care for each task. For example, for classification tasks, you may use the class token
[CLS] (introduced in Chapter 15) as the only global token (see the lefthand side
of Figure 17-4): it can “see” every token, and every token can “see” it, so it serves
as a hub for information to propagate between distant tokens. For multiple choice
question answering (MCQA), you may get better results by making all the question
tokens global, since it’s often important for query tokens to be able to refer to the
question details. You can experiment with different global tokens for your task and
see what works best.

Classification MCQA Dilated attention

[CLS] Question

Figure 17-4. Longformer attention mask: the global tokens are task-motivated (left and
center); the Longformer also uses dilated attention (right)

The Longformer paper also proposed using shorter windows in lower layers and
longer windows in higher layers: since lower layers often focus on small-scale
patterns, this technique saves compute without significantly reducing the models
accuracy.

Moreover, the authors proposed using dilated windows for local attention (see the
righthand side of Figure 17-4), inspired by the WaveNet architecture (introduced in
Chapter 12). By increasing the dilation head in upper layers, it’s possible to expand
the receptive field of each query token without exploding the computational budget.

Its possible to use the same sparse attention mechanism in a
decoder: you just need to apply a causal mask on top of the local
and global masks.

Speeding Up Multi-Head Attention | 13



Thanks to the constant number of global tokens and the dilated attention windows,
this architecture scales linearly to very long documents, and it generally performs
better than the Sparse Transformer. Can we do even better?

BigBird

In July 2020, Google researchers introduced BigBird,” which you can think of as
Longformer minus dilation plus random attention: just like in Longformer, each
query token attends to a window of local tokens (but not dilated), as well as a fixed
number of global tokens, plus a small number of random tokens. For example, in

Figure 17-5, each query token can attend local tokens, global tokens, and two random
tokens.

Random

Figure 17-5. BigBird attention mask: similar to Longformer minus dilation plus random
attention

The authors proposed two variants: BigBird-ITC (which stands for internal trans-
former construction), and BigBird-ETC (extended transformer construction). In the
former, the global tokens are chosen among existing tokens, while in the latter we add
a few extra global tokens at the start, such as [CLS]. In practice, these extra tokens
trade a little bit of speed for a higher accuracy.

Importantly, the paper showed that the introduction of random attention allows Big-
Bird to offer strong theoretical guarantees: despite scaling to long sequences linearly,
BigBird is just as expressive as the original Transformer architecture. In particular,
it can theoretically model any continuous function. In fact, it can even execute any

5 Manzil Zaheer et al., “Big Bird: Transformers for Longer Sequences”, arXiv preprint arXiv:2007.14062 (2020).
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algorithm, assuming we call the model repeatedly, feeding its outputs back to itself,
and assuming the float precision is sufficient: under these conditions, BigBird is
Turing complete. That said, BigBird does require more layers than the original Trans-
former architecture to reach the same accuracy: this is because information must go
through multiple layers to sufficiently propagate across tokens. Overall, BigBird is
great on tasks involving long documents, and it generally outperforms Longformer.

Each attention head uses a different random attention mask; this
reduces the number of layers needed for information to propagate
between distant tokens. Moreover, each random attention mask
is sampled when the model is created, then it remains constant;
this makes it easier for the model to learn how to exploit these
connections to propagate information across distant tokens.

As you might expect, several BigBird variants are available on the Hugging Face Hub.
For example:

from import pipeline

model_id = "google/bigbird-roberta-base"

pipeline = pipeline(task="fill-mask", model=model_id)

pipeline("She took some [MASK] medicine as she was feeling ill.")
Let’s now look at one last transformer architecture based on a sparse attention: the
Routing Transformer.

Routing Transformer

The Routing Transformer was proposed by Google researchers in March 2020,° a few
weeks before the Longformer.

The previous sparse attention mechanisms all decided which query tokens should
attend to which key tokens strictly based on their positions. In contrast, each atten-
tion head in the Routing Transformer starts by grouping both the query tokens and
the key tokens (together) into k clusters during each forward pass, then it computes
the scaled dot-product attention separately for each cluster. This means that each
query token can only attend to the key tokens located within the same cluster (see
Figure 17-6). This restriction doesn’t degrade quality too much since a query token
mostly pays attention to its most similar key tokens anyway, and similar tokens are
very likely to belong to the same cluster.

6 Aurko Roy et al., “Efficient Content-Based Sparse Attention with Routing Transformers”, arXiv preprint
arXiv:2003.05997 (2020).
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Clustering is based on the similarity between tokens, not their
positions. However, since each token carries positional information
thanks to the positional encodings, clustering is influenced both by
semantics and position: it has a bias toward local tokens. This is
usually a good thing, since local tokens are generally more relevant
than distant ones.

To perform the clustering step, the Routing Transformer uses a variant of mini-batch
k-means (introduced in Chapter 8): each attention head has k trainable centroids (i.e.,
each centroid is a vector of the same dimensionality as the tokens), and during the
forward pass, for each centroid, the set of s tokens closest to that centroid forms
a cluster; s is roughly equal to the number of tokens divided by k. This process
produces k clusters of equal sizes, which can partly overlap. During training, each
k-means centroid is updated at each iteration using an exponential moving average of
the closest s tokens. At inference time, the centroids are fixed.

Figure 17-6. Routing attention: query tokens can only attend to key tokens within the
same cluster

Before the clustering step, each attention head normalizes the
query and key tokens to unit vectors. This makes it possible to use
the dot product as a measure of similarity between the tokens and
the centroids, which speeds up k-means. The normalized tokens
are also used when computing the scaled dot-product attention.

This technique gives excellent results, even on short sequences. The authors rec-
ommend using a number of clusters k close to the square root of the maximum
sequence length, which ensures that the transformer scales with O(Lgy/Limax), just
like the Sparse Transformer. However, the Routing Transformer is fairly complex to
implement, so it hasn’t gained a lot of traction.

We have discussed four transformer architectures based on sparse attention: the
Sparse Transformer, Longformer, BigBird, and the Routing Transformer. In fact, Swin
transformers would also belong in this section if we hadn't already discussed them in
Chapter 16. All of these models speed up MHA considerably, use much less memory,
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and scale linearly (or at least sub-quadratically) to large inputs, however they can
struggle with some tasks that are sensitive to long-range details.

Now let’s move on to a very different approach to speeding up attention.

Approximate Attention

Approximate attention methods reduce the computational complexity and memory
usage of MHA by computing an approximation of the scaled dot-product attention
equation: this is done either by tweaking the equation itself to compute a fast approx-
imation, or by compressing the inputs. We already saw two examples of the latter
approach in Chapter 16:

o The Pyramid Vision Transformer (PVT) uses spatial reduction attention (SRA),
which compresses the key and value by shrinking them along the spatial dimen-
sions: this makes its computational complexity and memory usage O(L L, / r*)
where r is the reduction factor, instead of O(L,L,) for regular attention.

o The Perceiver uses cross-attention to compress the input sequence into a smaller
latent sequence of constant length ¢. This allows it so scale linearly with the
sequence length: it’s O(fL,).

In this section, we will discuss four more influential transformer architectures based
on approximate attention: Reformer, Linformer, and Performer. Let’s start with the
Reformer architecture.

Reformer: LSH-based approximate attention

The Reformer architecture, proposed in January 2020 by a team of Google and
U.C. Berkeley researchers,” uses a combination of several techniques to speed up
transformers, including locality-sensitive hashing (LSH) attention, which has a compu-
tational complexity of O(L, log(L,)) instead of O(L,L,), while only slightly degrading
accuracy. Let’s see how it works.

In the scaled dot-product attention equation, Attention(Q, K, V) = softmax(QKT /
M)V, the computationally nasty QKT term is inside the softmax function. Recall
that the softmax function’s output is mostly determined by the largest terms in
its inputs, which in this case correspond to the query/key pairs with the largest
dot-product: in other words, the output is mostly influenced by the most similar
pairs. So if we can find an algorithm that can quickly identify the most similar
query/key pairs, we won't need to compute QKT for all possible pairs: just for the
most similar ones. The result won't be perfectly accurate since we will be neglecting
all the contributions from less aligned query/key pairs, but it should be pretty close.

7 Nikita Kitaev et al., “Reformer: The Efficient Transformer”, arXiv preprint arXiv:2001.04451 (2020).
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One such algorithm was introduced in 1998 by Piotr Indyk and Rajeev Motwani:®
locality-sensitive hashing (LSH). Given a set of high-dimensional vectors, LSH can
quickly group them into clusters of nearby vectors. To do this, each vector is passed
through a hash function that directly outputs the cluster ID. Which hash function
should we choose? Well, if we used a hash function such as MD5 or SHA256 (modulo
the number of clusters) then LSH would just group vectors pseudorandomly, which
wouldn’t be useful at all. Therefore, we must instead use a hash function that tends to
produce similar hashes for similar input vectors: this is called a locality-sensitive hash
function.

Various LSH functions have been invented over time. The cross-polytope LSH, more
commonly called angular LSH, is a particularly fast and accurate one. It was proposed
in 2015 by Alexandr Andoni et al.” Here is how it works:

o If k is the desired number of clusters, we start by creating a list L of random
vectors by sampling r, to r,,, independently from a Gaussian distribution.

o We then append the opposite vectors -r; to -r;, to the list. It now contains k
vectors.

« For each vector v that we want to hash, we find the vector in L that is most
aligned with it, and we use its index in L as the hash for vector v. For example, if
v is most aligned with the vector at index 42 in L, then its hash is 42.

This algorithm can be used as a locality-sensitive hash function because if two vectors
v, and v, are very similar (i.e., almost aligned), then it’s highly likely that they will
both be most aligned with the same vector in L, so they will have the same hash (see
Figure 17-7). Conversely, dissimilar vectors are likely to have a different hash.

8 Piotr Indyk and Rajeev Motwani, “Approximate Nearest Neighbors: Towards Removing the Curse of Dimen-
sionality”, Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998).

9 Alexandr Andoni et al., “Practical and Optimal LSH for Angular Distance”, arXiv preprint arXiv:1509.02897
(2015).
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Each vector is assigned to the most
aligned random vector.

When two vectors are almost aligned
(e.g., v, and v,) they are likely to be
assigned to the same random vector.
But a very different vector (e.g., v,) is
likely to be assigned to a different
random vector.

Figure 17-7. Angular LSH: two similar vectors v, and v, are likely to share the same
most similar random vector

To implement angular LSH efficiently using PyTorch, we can use the following
function:

import torch
import torch.nn as nn
import torch.nn.functional as F

def angular_lsh(vectors, k):
R = torch.randn(vectors.size(-1), k // 2, device=vectors.device)
normalized_vectors = F.normalize(vectors, p=2.0, dim=1)
V_proj = normalized_vectors @ R
V_concat = torch.cat([V_proj, -V_proj], dim=1)
return torch.argmax(V_concat, dim=1)

Let’s go through this code:

o We start by generating a random matrix where the column vectors are r, to ry,.
« Next, we normalize the input matrix so that all row vectors have length 1.

o Then we multiply both matrices: since the input vectors are normalized and the
random vectors have similar lengths," the resulting matrix roughly contains the
cosine similarity score for each pair of input vector and random vector (times a
constant).

o We then concatenate the opposite of this matrix along the horizontal dimension:
this gives us the similarity scores between each vector and the opposite of vectors
r, to 1y, for free.

10 As the number of dimensions d increases, the length of a random vector sampled from a Gaussian distribu-
tion approaches the square root of d.
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o We now have all the similarity scores we need, so we are ready to return the
index of the highest similarity score in each row.

Let’s try using this function to cluster 16 random 512-dimensional vectors into k = 4
clusters:

>>> torch.manual_seed(42)

>>> vectors = torch.rand(16, 512)

>>> angular_lsh(vectors, k=4)

tensor([2, 2, 0, 3, 0, 2, 2, 2, 2,1, 1, 3, 3, 1, 2, 1])
Now we could just cluster all query tokens and key tokens together using angular
LSH, then make each query token attend to only the key tokens within the same
cluster. This would be fast, but sadly too approximate: indeed, angular LSH can
sometimes assign similar vectors to different clusters, and if a query token ends up in
a cluster that does not contain some of its most similar key tokens, then the softmax
function will be missing its most important inputs; the result will be too imprecise.

To solve this issue, there’s a simple solution: we can just run several independent
rounds of angular LSH (e.g., 4 rounds) and make each query token attend to all
key tokens that it was clustered with in at least one round. With that, we can be
reasonably confident that each query token will attend to all similar key tokens.

The Reformer architecture uses several other advanced techniques:

o Reversible residual layers, introduced in Chapter 12.

o Chunked feedforward layers, where the sequence is processed chunk by chunk in
the feedforward layers to reduce peak memory usage.

o Axial positional encodings where the large positional embedding matrix is
replaced with two much smaller ones, like the x and y positional embeddings
in some vision models.

o Shared Query/Key (Shared-QK), where instead of using two different projections
of the same input sequence to produce the query and key for each attention head,
we use the same projection, so the key and query sequences are the same: Q = K.
This works well in combination with LSH attention as it makes it easier to mix
queries and keys. However, it does reduce the model’s flexibility, and ultimately
its accuracy.

The Reformer proved that approximating attention was possible, and it pushed the
community to find more compute- and memory-saving tricks. A few months later,
another approximate-attention model was proposed: the Linformer. It’s surprisingly
simple, especially in comparison with the Reformer, as we will see now.
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Linformer: Low-rank approximate attention

The Linformer architecture was introduced in June 2020 by Meta researchers." To
understand how it works, let’s start by rewriting the scaled dot-product equation as
Attention(Q, K, V) = PV, where P = softmax(QKT / M). The matrix P is called the
context mapping matrix, and its shape is L, x L,. Importantly, the authors analyzed
various pretrained transformers, and they observed that this matrix is always close to
a very low-rank matrix. In self-attention layers (where L, = L,), P is generally close
to a matrix of rank r = log(L,). This means that it should be possible to compress P
considerably without losing too much information.

But how? We could compress P using PCA, but we would just be wasting compute
and accuracy for nothing, since the cost of computing P is precisely what we want
to reduce. So the authors proposed shortening the keys and values using two linear
projections E and F, learned during training. To be clear: this reduces the length of
the key and value sequences (i.e., the number of tokens), not the dimensionality of
each token. This low-rank attention mechanism is based on Equation 17-1, which is
represented in Figure 17-8.

11 Sinong Wang et al., “Linformer: Self-Attention with Linear Complexity”, arXiv preprint arXiv:2006.04768
(2020).
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Figure 17-8. Low-rank attention: the key and value are shortened using linear projec-
tions

Equation 17-1. Linformer’s low-rank approximate attention

QK T
N

where K’ = EK and V/ = FV

V/

Attention(Q,K,V) = softmax

As you can see, it is the normal equation for scaled dot-product attention, except we
are using the compressed key K’ and the compressed value V’ instead of K and V. In
this equation:

o Eisa trainable matrix of shape r x L,.

o Fis a trainable matrix of shape r x L, (recall that L, = L,).

o ris the compressed sequence length, which is a hyperparameter you can tune
(e.g., 64).

Since L, varies depending on the input sequence, the authors proposed using traina-
ble matrices E’ and F’ with enough columns for the longest possible sequences, then
truncating them on the fly to the appropriate number of columns.

The authors also experimented with various parameter sharing techniques to further
reduce memory usage:
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« Sharing E and F across all attention heads within each layer.

o Using the same projection matrix G to compress both key and value (K’ = GK
and V' = GV), and using this matrix G across all attention heads within each
layer.

o Using the same matrix G to compress both the key and value, across all attention
heads and all layers.

Since the key and value sequences are much shorter, with just r tokens each, low-rank
attention is significantly faster and less memory-hungry than regular attention. Most
importantly, since r is fixed (it is chosen before training and never changes), low-rank
attention scales linearly to long sequences, hence the name of the architecture—Lin-
former—which stands for linear transformer.

Although a given Linformer model has a fixed r and scales linearly
to long sequences, the optimal value for r increases roughly with
the logarithm of the input sequence length, so you will have to

\ increase r if you want quality to remain acceptable for longer
sequences. Therefore, one could argue that Linformer actually
scales with O(L log(Ly)).

In short, the Linformer architecture scales well, it’s relatively easy to implement,
and it’s accuracy is close to the Reformer’s (as long as r is not too small). It also
inspired later architectures based on other low-rank approximation methods, such
Nystromformer.’> Now lets turn to the Performer, which approximates attention
using a very different mathematical technique.

Performer: Kernel-based approximate attention

The Performer architecture was proposed in September 2020 by a team of researchers
from Google, DeepMind, the University of Cambridge, and the Alan Turing Insti-
tute.”® Just like Linformer, Performer scales linearly to long input sequences thanks to
a quick approximation of the scaled dot-product attention equation. However, it does
so in a very different way.

12 Yunyang Xiong et al., “Nystromformer: A Nystrom-Based Algorithm for Approximating Self-Attention”,
arXiv preprint arXiv:2102.03902 (2021).

13 Krzysztof Choromanski et al., “Rethinking Attention with Performers”, arXiv preprint arXiv:2009.14794
(2020).
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This section is quite math-heavy, so please feel free to skip it if
you’re not interested in the mathematical details. The short version
is that Performer computes a quick approximation of dot-product

, attention using a kernel trick, allowing it to scale linearly with the
input sequence length.

To understand how Performer works, we first have to remember that the softmax
function computes the exponential of every term in its input matrix, then divides
each row by its sum: this ensures that each row adds up to 1. This can be written as:
softmax(M) = D'A where A = exp(M) and D is a diagonal matrix where each value
in the main diagonal corresponds to the sum of each row in A, and D! is its inverse
(i.e., each diagonal term is replaced by its inverse).

We can now rewrite the scaled dot-product attention equation as Attention(Q, K, V)
= softmax(QKT")V = D'AV, where A = exp(QKT). Note that I left out the scaling

factor ﬁ to simplify the equation: assume that Q and K have each been scaled by the
1
square root of this factor (i.e., [ﬁ = d) 4) so after the matrix multiplication QKT,
1 1

t the desired factor (di # x dj % = —=).
we get the desired factor (di 4 x di @)
Now here comes the crucial part. The authors proposed a way to quickly approximate
A: they defined a function ¢ (which I will present shortly) such that A = exp(QKT) =
$(Q)¢(K)T. This allowed them to propose the approximate attention equation shown
in Equation 17-2.

Equation 17-2. Performer’s kernel-based approximate attention
Attention(Q,K,V) = D™ 1¢(Q)¢(K) TV

1
where Q and K are already scaled by di4

Notice that this equation is just the product of several matrices, and since matrix
multiplication is associative—meaning that ABC = (AB)C = A(BC)—we can start by
computing G = ¢(K)T V, then compute H = ¢(Q)G, and finally compute Attention =
D'H.

The important point to note is that all of these steps involve fairly small matrices
(see Figure 17-9): we never need to compute QKT, which is a huge L, x L, matrix.
Indeed, ¢(K)T is a small m x L, matrix (where L, may be large, but m is a small
hyperparameter you can tune, e.g., 256), and V is an L, x d, matrix (small since
d, is small, it's the value’s dimensionality, e.g., 64), so G is a tiny m X d, matrix.
Similarly, $(Q) is a small L, x m matrix, so H is a small L, x d, matrix (where d, is the
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query’s dimensionality, e.g., 64). D' is a large L, x L, matrix, but since it’s a diagonal
matrix, it doesn’'t require much computations or memory."* Overall, this approximate
attention equation requires O(Lmd) computations, and O(Lm + Ld + md) memory
space, where L = L, + L, and d is the model's dimensionality. As you can see, this
offers linear scaling with regards to L.

l‘""":::;‘i‘:::::::::i----
e dq/' ) III\ . 1 ‘*m ‘} o 5 d_
KT v N NMT v N
LAFH L, L, L Lo L Lk% LT
softmax % =~ [ u % =0
LQ K J V. D"¢Q)4K) V)
mEEH#(K)' V is tiny
> T :" dV
] J 4 )
L. 3 D" is actually an L *xL
HUGE diagonal matrix, so we only
need to store and compute
the diagonal terms.
L

k

Figure 17-9. Performer’s kernel-based attention

If you have read the online Appendix C on support vector machines (SVMs), you
might have noticed that Equation 17-2 is a kernel-based equation. A kernel is a
function K(x, y) that computes the dot product f(x)-f(y) for some function f, where f
maps its input vector to another space. In an SVM, we never actually compute f(x)
or fly) since the kernels we use can also be expressed using simple equations based
directly on x and y. In fact, we don’t even have to know what f is: it’s often just an
implicit function that maps input vectors to some higher-dimensional space (even
infinite-dimensional in some cases). The whole point is to avoid having to explicitly
map x and y to a different space, while still obtaining the same result: f{x)-f(y). This is
called the kernel trick.

14 In fact, D is typically computed by appending a column of 1s to V, then evaluating A = $(Q)$(K) V. The last
column of A contains the diagonal terms of D. So if we divide each row of A by its last element, then remove
the last column, we get the same result as Equation 17-2.

Speeding Up Multi-Head Attention | 25


https://homl.info

However, in the Performer, we do the exact opposite: we explicitly compute f(x)-Ay)
to avoid having to evaluate K(x, y). Specifically, we compute ¢(Q)¢(K)™ so we don't
have to evaluate the exponential kernel K(X, Y) = exp(QKT). Isn’t math just beautiful?

Now the difficulty is to find a function ¢ such that ¢(Q)¢(K)T = exp(QKT). That’s
exactly what the authors did. Their method, named Fast Attention Via positive
Orthogonal Random features (FAVOR+), is actually even more general: it can provide
such a function ¢ for various kernel functions, not just the exponential function.
However, we will focus on the exponential kernel.

The exponential kernel is sometimes (imprecisely) called the soft-
max kernel (e.g., in the Performer paper).

To find ¢, the authors explored the vast family of functions of the form shown in
Equation 17-3 (this is a vectorized form of equation (5) in the Performer paper). I've
also represented it in Figure 17-10.

Equation 17-3. The family of functions explored by the Performer authors for the
feature map ¢ (vectorized)

hX)

m

P(X)

In this equation:

o ¢(X) maps X from a d-dimensional space to an ¢m-dimensional space (thats
¢ times m), where m is a hyperparameter (e.g., 256), and ¢ is the number of
functions f; to f,.

o h(X) is any function that returns a scaling factor for each row of X.
o f, to f, are any itemwise real functions (e.g., exp).

o W is any nontrainable d x m matrix. It is used to map X from d dimensions to m
dimensions. W can be deterministic or random. If it’s random, then each column
vector is sampled independently from the same distribution; typically a standard
Gaussian distribution.

o+ The notation [-+...;-] means concatenation along the horizontal axis.
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Figure 17-10. A visual representation of Equation 17-3

The authors mathematically proved that the following function from this family can
be used to approximate the exponential kernel (see appendix F in the Performer
paper for the proof):

« h(X) computes exp ( - % Il x; || 2) for each row x; in X, where ||x,|| is the length of
the vector x,.

e {=1

o fi(x) = exp(x)

e W is random, with each element sampled independently from the standard
Gaussian distribution: W = torch.randn(d, m).

» m is a hyperparameter you can tune (e.g., 256): increasing m makes the approx-
imation more accurate, but it also linearly increases the memory and computa-
tional costs.

The authors also proposed a second function, less efficient but more precise:
¢ h(X) computes \/_ exp ( = x; | 2) for each row x.

o« 0=2
o fi(x) = exp(x) and f,(x) = exp(-x)
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o W and m are just like in the first function.

Let’s implement the first function using PyTorch:

def phi(X, W):

squared_norms = X.square().sum(dim=-1, keepdim=True)

return torch.exp(X @ W - squared_norms / 2) / W.size(-1) ** 0.5
This implementation supports inputs with more than two dimensions, which is
useful since Q and K typically have a shape of [batch size, heads, length, dim], and W
has a shape of [heads, length, dim]: this makes it possible to process all sequences in
the batch and all attention heads at the same time. Moreover, instead of computing
exp(X @ W) and exp(-squared_norms / 2) separately, we merge them into the same
exponential, which is more efficient.

Sadly, this implementation is not very stable, numerically: indeed, if any value in XW
is very large, the exponential may overflow to infinity. To avoid this, we can subtract
the maximum value v of XW from all values (independently for each instance in the
batch and for each attention head) before computing the exponential: this means that
the output will be off by a constant factor exp(-v) (independently for all instances
and heads). Luckily, this doesn’t matter, since we will normalize ¢(Q)¢(K)T later. This
technique is called safe softmax. So let’s implement the stable version of phi():

def phi(X, W, dim_subtract_max=(-2, -1)):
squared_norms = X.square().sum(dim=-1, keepdim=True)
X_proj =X@Ww
max_vals = X_proj.amax(dim=dim_subtract_max, keepdim=True)
return torch.exp(X_proj - max_vals - squared_norms / 2) / W.size(-1) ** 0.5

By default, we subtract the maximum value of the full matrix XW from all of
its values (independently for each instance and head). However, if we set dim_sub
tract_max=-1, we can subtract the maximum value independently for each row,
thereby preserving some precision: we can afford to do this when computing ¢(Q),
since all of the rows of ¢(Q)¢(K)T will be normalized independently.

Now we're ready to put everything together into the FavorAttention module:

class FavorAttention(nn.Module):
def __init__(self, d_model, n_heads, n_features):
super().__init__ ()
self.d_head = d_model // n_heads
W = torch.randn(n_heads, self.d_head, n_features) # h, d, m
self.register_buffer("W", W)

def forward(self, Q, K, V):
scale = self.d_head ** -0.25
Qp = phi(Q * scale, self.W, dim_subtract_max=-1)
Kp = phi(K * scale, self.W)
D = Qp @ Kp.sum(dim=-2).unsqueeze(-1) # B, h, Lg, 1
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Kp_T_V = Kp.transpose(-2, -1) @V # B, h, m, d
return (Qp @ Kp_T_V) / (D + 1e-6)

Let’s go through this code:

» The constructor generates the random matrix W and registers it as a buffer,
which is useful when saving the model.

o The forward() method starts by computing the standard scale for the dot-

product attention: ﬁ It then applies ¢ using the phi() function to Q and K
G

(after scaling them, as explained earlier). Note that we set dim_subtract_max=-1

for the query, as we just saw.

o Next, we compute D, which contains the sum of each row in Qp @ Kp.T. We do
this efficiently, without actually having to compute Qp @ Kp.T (calculating Qp @
Kp.T would defeat the whole purpose of FAVOR+, since this is a huge L, x L;
matrix).

o Lastly, we compute the rest of Equation 17-2, and we divide by D for normaliza-
tion. Note that we add a tiny value 1e-6 to avoid division by zero.

FAVOR+ was inspired by a 2007 technique named random Fourier
features,”> which can approximate various kernel functions using

d(X) = % cos(XW + b), where the column vectors of W and the
m

vector b are sampled from a standard Gaussian distribution. How-
ever, this technique is limited to shift-invariant kernel functions,
where K(x, y) only depends on the difference x - y. However, the
exponential kernel is not shift-invariant.

So far we've seen how to obtain fast attention via random feature maps: this covers
the FAV and R parts of the FAVOR+ acronym. But what about O and +? The + just
highlights the fact that XW is mapped to positive values (i.e., exp(XW)). This helps
improve the precision of the approximation, since the exponential kernel is always
positive. The O stands for “orthogonal”: the authors showed that by tweaking the ran-
dom column vectors in W to make them orthogonal to each other, the approximation
becomes significantly more accurate (especially when 1 is small), so we can afford to
reduce m if we want to save even more compute and memory.

For this, the authors proposed using a standard technique named Gram-Schmidt
orthogonalization: one way to implement it is to first factorize the matrix W using

15 Ali Rahimi and Benjamin Recht, “Random Features for Large-Scale Kernel Machines”, Advances in Neural
Information Processing Systems 20 (2007): 1177-1184.
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QR decomposition, so W = QR, where Q contains orthogonal unit vectors and R is
upper triangular. We then drop R, keeping only Q. Finally, we rescale Q by a factor
of \/d, thereby restoring the original average scale of the random vectors. Since a
d-dimensional space cannot have more than d orthogonal vectors, we process Q by
chunks of d columns at a time, so each chunk contains d orthogonal vectors. This
whole process can be implemented in PyTorch in just a few lines of code:

def orthogonalize(W):
d_head = W.size(-2)
W_orth = torch.cat([torch.linalg.qr(W_chunk)[0]
for W_chunk in W.split(d_head, dim=-1)], dim=-1)
return W_orth * d_head ** 0.5
To use this function, simply add W = orthogonalize(W) in the constructor, right
after generating W.

As you can see, while this technique is quite mathematically challenging (it took me
some time to fully grasp it), it is not too difficult to implement, and it gives excellent
results, especially when dealing with very long sequences.

Now that we've discussed several methods for sparse attention and approximate
attention, let’s look at another approach to accelerate multi-head attention: sharing
projections across attention heads.

Sharing Projections Across Attention Heads

When an MHA layer receives a query, key, and value, it starts by applying a linear
transformation to each of these, then it splits the results across all attention heads
(see Figure 15-4). For example, if there are h = 8 attention heads and the input has
a dimensionality d = 512, then each of the three linear transformations produces
a 512-dimensional output, and after splitting the three outputs we get 8 projected
queries, 8 projected keys, and 8 projected values, all 64-dimensional.

When we say query, key, or value, it can be unclear whether we
are referring to the MHA layer’s inputs, or the projections fed to
any individual attention head. Luckily, the context usually makes it

\ clear which one we are talking about, but whenever needed I will
specity input query/key/value for the MHA’ inputs, and note them
X Xk and Xy, and projected query/key/value for the projections
fed to a given attention head, which I will denote as Q, K, and V (or
Q, K, and V; to specifically refer to the inputs of the i attention
head).

This process relies on three d x d trainable projection matrices, which introduces
a large number of model parameters and a significant computational cost for the
projections. More importantly, the projections consume a vast amount of memory
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space. This is especially problematic at inference time when generating text, as the
KV cache expands with each new token, potentially exhausting the available VRAM.
This can crash the program, or at least cause painful slowdowns due to memory page
swapping. Furthermore, reading the entire KV cache to generate each new token can
easily saturate the memory bandwidth, drastically slowing down the model.

Do we really need all of these projections? Couldn't we share some of them across
attention heads? We have already seen that the Reformer architecture shares the same
projection for the query and key (shared-QK), and the Linformer authors proposed
sharing the extra projection matrices E and F in various ways. In this section we will
discuss three more ways to share projections: multi-query attention, grouped-query
attention, and multi-head latent attention.

Multi-query attention (MQA)

The first paper to propose the idea of sharing projections across attention heads was
published in 2019'¢ by Noam Shazeer, one of the authors of the original Transformer
architecture. He proposed to share the same projected key and value across all
attention heads, highlighting the benefits for text generation. Since there is still a
different projected query for each attention head, he called this technique multi-query
attention (MQA).

Although MQA uses the same projected key and the same projec-
ted value across all attention heads, these are two different projec-
tions: K# V.

MQA reduces the KV cache size by a factor equal to the number of attention heads.
However, it also reduces the model’s flexibility considerably, which has a negative
impact on quality. If you want a middle ground between MQA and MHA, you can
use grouped-query attention instead.

Grouped-query attention (GQA)

GQA was proposed in 2023 by Google researchers.”” The idea is quite simple: we split
the attention heads into multiple groups, and each group shares the same projected
key and value. In fact, you can think of MQA as GQA with a single group. MHA,
MQA, and GQA are represented in Figure 17-11.

16 Noam Shazeer, “Fast Transformer Decoding: One Write-Head is All You Need”, arXiv preprint
arXiv:1911.02150 (2019).

17 Joshua Ainslie et al., “GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Check-
points’, arXiv preprint arXiv:2305.13245 (2023).
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Figure 17-11. MHA, MQA, and GQA

In PyTorch, you can implement MQA and GQA efficiently by setting
enable_gga=True when calling the F.scaled_dot_product_attention() function.!®
The query tensor contains the projected query for each attention head, with a shape
of [batch size, h, L, d] (where h is the number of heads), but the key and value tensors
contain only one projection per head, so they have a shape of [batch size, g, L, d]
(where g is the number of groups). For example, the following code runs GQA with 8
attention heads, split into 2 groups which share the same projected key and value:

batch_size, Lq, Lk, d_head = 32, 100, 90, 64

n_heads = 8

n_groups = 2

query = torch.randn(batch_size, n_heads, Lq, d_head)

key = torch.randn(batch_size, n_groups, Lk, d_head)

value = torch.randn(batch_size, n_groups, Lk, d_head)

attn = F.scaled_dot_product_attention(query, key, value, enable_gqa=True)

Grouped-query attention is a great compromise between MHA and GQA, and it
gives you the flexibility of choosing the number of groups, so you can balance
efficiency and quality. That said, multi-head latent attention seems to outperform
GQA consistently.

Multi-head latent attention (MLA)

In December 2023, the Chinese Al company DeepSeek began releasing impressive
models, starting with a general-purpose LLM simply named DeepSeek-LLM. In Janu-
ary 2024, they released DeepSeek Coder, a model designed for code generation and
completion, soon followed by DeepSeek-VL, a vision-language model. In May, they
released the second version of their flagship general-purpose LLM, DeepSeek-V2,
based on mixture of experts and MLA (which I will discuss shortly). They continued

18 At the time of writing, this is still an experimental feature.
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to release new versions of these models, as well as Janus, a multimodal transformer, in
October. In January 2025, they introduced DeepSeek-R1, a powerful reasoning model
which outperformed OpenATl’s 01 model on several benchmarks, despite having been
trained for a fraction of the cost. DeepSeek-V3.1 was released in August 2025. That’s
an impressive track record!

The good news is that all the major DeepSeek models are open source and free
for both research and commercial use, and DeepSeek researchers published many
papers and technical reports, openly sharing the key innovations that allowed them
to train such impressive models with a much lower budget than giants like Google or
OpenAl One of these techniques is multi-head latent attention (MLA), presented in
the DeepSeek-V2 paper:”” MLA reduces the KV cache roughly as much as MQA does,
but without reducing the model’s quality. In fact, it even improves it! Let’s see how it
works.

In both self-attention and cross-attention, the input key and value are the same
input sequence denoted Xy. The key idea of MLA is to compress this d-dimensional
sequence by projecting it to a smaller d.-dimensional space—the latent space—using
a trainable projection matrix Wyy, then use the compressed sequence Ly, to create
the key and value projections for all attention heads (see Figure 17-12).

At inference time, instead of storing the key and value projections in the KV cache,
we can store Ly, and use it to recompute the projected keys and values when needed:
this saves plenty of space since there’s a single compressed sequence regardless of the
number of attention heads.

19 DeepSeek-Al, “DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model’,
arXiv preprint arXiv:2405.04434 (2024).
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Figure 17-12. Multi-head latent attention (MLA)

This technique greatly reduces the size of the KV cache, as you can see in Table 17-1,
which compares the KV cache size when using MHA, MQA, GQA, or MLA.

Table 17-1. KV cache size for MHA, MQA, GQA, and MLA

Architecture KV cache size equation  Example

MHA pXn XnXdyxhx2 3,750 MB
MQA DX N XN X dy X 2 29 MB
GQA pXN XN XdyXgx2 469MB
MLA p XN XngXd, 59 MB
In this table:

« p is the floating point precision, in bytes (e.g., 2).
o n, is the number of MHA layers in the model (e.g., 60).
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o n,is the total number of tokens stored in the cache (e.g., 1,000).
o d, is the attention head dimensionality (e.g., 128).

o d.is the dimensionality of the latent space (e.g., 512).

o his the number of attention heads (e.g., 128).

+ gis the number of groups in GQA (e.g., 16).

As you can see, in this particular example (which is based on the DeepSeek-V2
hyperparameters), MLA shrinks the KV cache by a factor of 64! That’s not quite as
much as MQA, but the MLA model has a much higher quality. There are two reasons
for this:

o Firstly, the MLA model has projected keys and values for each attention head, so
it has much more flexibility than MQA and GQA.

o Secondly, since we use much smaller matrices to project the keys and values, the
model is both smaller and faster. Thanks to this speed up, MLA actually reaches a
better performance than MHA in the same amount of training time!

To implement MLA, the simplest option is to reuse an open
source implementation, such as the one used in DeepSeek-V3.
Alternatively, you can write your own custom module, and the
good news is that it can use the optimized F.scaled_dot_prod
uct_attention() function under the hood for each attention head.

With that, we've covered some of the main techniques used to speed up MHA, using
sparse attention, approximate attention, and sharing projections across attention
heads. Now let’s turn to the last attention optimization technique in this chapter:
FlashAttention.

FlashAttention: A Fast and Accurate Attention Implementation

FlashAttention is an optimized implementation of the now-familiar scaled dot-
product attention: Attention(Q, K, V) = softmax(QKT / \/d_k)V. It takes full advantage
of the hardware architecture of modern GPUs, computing attention up to 2 to 4
times as fast as previous optimized implementations, without approximation, and is
particularly efficient with long input sequences.

It was proposed in May 2022 by a team of researchers from Stanford University and
the University at Buffalo.?

20 Tri Dao et al., “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness”, arXiv pre-
print arXiv:2205.14135 (2022).
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To understand FlashAttention, it's important to know that a GPU’s memory is split
into different memory types, from the fastest to the slowest:

Registers

A GPU contains multiple clusters of processing cores running parallel threads.
Each cluster is called a streaming multiprocessor (SM). For example, Nvidia’s
A100 GPU contains 108 SMs. Each SM has direct access to a number of 32-bit
registers, for example 2'¢ = 65,536 registers (that’s only a total of 256 kB). Each
individual thread is restricted to its own private set of registers (e.g., 255), so the
data is fragmented across threads. On the other hand, registers can be accessed
in a single clock cycle, allowing the highest possible bandwidth (e.g., 100+ TB/s
across all SMs). Registers are used to hold intermediate results, counters, and
accumulators such as partial sums during matrix multiplications.

Shared memory / L1 cache
Each SM also has a small amount memory (e.g., 192 kB) shared across all
threads. This memory lives on-chip and has a very high bandwidth (e.g., 20
TB/s). It can be used to store chunks of data during computations. For example,
matrices are typically chopped into little chunks, which can be stored in this
shared memory, a few at a time. Shared memory can also be used for communi-
cation between threads. Lastly, part of this memory can be allocated for the level
1 (L1) cache: the GPU automatically caches frequently accessed data in this space.

Level 2 (L2) cache
This memory also lives on-chip. It is shared across all SMs, and is managed
automatically by the GPU to cache frequently accessed data, such as some model
weights. It has a larger capacity (e.g., 40 MB) but it is slower (e.g., 7 TB/s).

Global memory

The previous memory types all live in SRAM (Static RAM), which is fast but
expensive. However, global memory (e.g., High Bandwidth Memory, or HBM)
lives off-chip in a cheaper type of RAM called DRAM (Dynamic RAM), making
it possible to have a much larger capacity (e.g., 80 GB) at the cost of a lower
bandwidth (e.g., 2 TB/s). This global memory is what we generally mean when
we talk about GPU memory: this is where the models live, and where new
batches of data go before they are processed.

To make our algorithms run as fast as possible, we have to make sure that the GPU
spends as little time as possible transferring data from global memory to SRAM. This
is precisely what FlashAttention does: it's an I/O-aware implementation. Recall that
the scaled dot-product attention equation performs one matrix multiplication QKT,
then it computes the softmax of the output, and finally it performs another matrix
multiplication. How can we speed up these operations?
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Speeding up matrix multiplication is done through tiling: we first chop the two
matrices that we want to multiply into tiles, which are small matrices that can easily
fit in SRAM, then we multiply these tiles and add up the results to compute the
output tiles gradually, as shown in Figure 17-13: in this example, we multiply two 8
x 8 matrices by first chopping them into 4 x 4 matrices, then we use these tiles to
compute the output tiles as shown (you can verify that this gives the correct result).
This process keeps the processing cores busy with data that they can fetch quickly
from SRAM, while minimizing the number of fetches from global memory.
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Figure 17-13. Fast matrix multiplication using tiling
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The softmax operation can also be sped up significantly. A naive implementation of
softmax(M) would first evaluate E = exp(M), then it would compute the sum of each
row D = E.sum(dim=-1)," and finally O = E @ D (where @ represents itemwise
division). However, this approach will involve fetching M from global memory to
compute E, and writing the result to global memory (assuming M is large), then
fetching E to compute D, storing D, fetching E and D to compute S, and finally
writing S to global memory. That’s a lot of fetching and writing!

A much more efficient way to compute the softmax is to fuse the computation of E
and D: for this, we can just iterate over each row of M and keep track of a running
total of exp(M;)), for each row. This gives us D. Then we iterate a second time over M
and this time we compute exp(M;;) / D,. Since were avoiding reading and writing E
altogether, the result is much faster. This is called online softmax.

FlashAttention actually goes several steps further: firstly, it also fuses the computation
of QKT using tiled matrix multiplication, as well as the computation of SV. Moreover,
it avoids numerical overflows by subtracting the max row value before exponentiating
(this is safe softmax, as we saw earlier). This involves computing a running estimate
of the max value, and adjusting the running total whenever we find a larger max

21 The mathematical notations for per-column operations, per-row operations, and broadcasting, can be mis-
leading. This is why I preferred using a bit of code here. In papers, you might see something like D = E 1,
where 14 is a column vector of dimensionality d (equal to the number of columns in M in this case). However,
we never actually create this vector or perform a matrix multiplication, we just compute the sum of each row.
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value. Please see the notebook for a toy Python implementation, and see page 5 in the
paper for the full algorithm.

Python is fantastic for high-level coding but it’s not designed for
low-level coding such as writing custom kernels (i.e., GPU pro-
grams), so we have to switch to a systems language such as C++.
Languages like Julia and Mojo attempt to solve this two-languages
problem: they support simple, expressive, and dynamic high-level
coding, as well as typed, optimized, low-level coding giving you full
flexibility. Mojo even aims to be a superset of Python.

Tri Dao, the first author of FlashAttention, published a second version of FlashAtten-
tion in July 2023: FlashAttention-2* speeds up the original algorithm by optimizing
work partitioning and parallelism across GPU threads. While FlashAttention typi-
cally reaches 25% to 40% utilization of the GPU, FlashAttention-2 can reach 50% to
75%.

FlashAttention-2 doesn't ignore padding tokens, and it only sup-
ports 16-bit float precision (torch.float16 or torch.bfloat16).

\

One year later, Jay Shah et al. published FlashAttention-3%, which further optimizes
the algorithm by exploiting the asynchronous execution and low-precision capabili-
ties of newer GPU architectures, such as the NVIDIA H100.

PyTorch’s F.scaled_dot_product_attention() function automatically uses
FlashAttention-2 if it detects that your hardware is compatible: it supports Nvidia
CUDA GPUs (with a compatible CUDA version), and AMD GPUs through the
ROCm toolkit. For more control, you can use the flash-attn library directly: it can be
installed using pip install flash-attn --no-build-isolation.

When using the Hugging Face Transformers library, most models support
FlashAttention-2 out of the box: you just have to specify attn_implementa
tion="flash_attention_2" when loading the model with the from_pretrained()
method.

22 Tri Dao, “FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning”, arXiv preprint
arXiv:2307.08691 (2023).

23 Jay Shah et al., “FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision”, arXiv
preprint arXiv:2407.08608 (2024).
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FlashAttention (1, 2, and 3) completely changed the game when it comes to accelerat-
ing attention: many recent architectures dropped sparse and approximate attention
methods in favor of FlashAttention, as it provides a huge efficiency boost without
compromising quality. Note that you can combine FlashAttention and MLA: MLA
uses regular scaled dot-product attention in each attention head, so it also benefits
from FlashAttention; they make an excellent pair.

Lets step back for a second: we first looked at techniques to accelerate decoding,
including KV caching, speculative decoding, and a few others, then we discussed
many methods to accelerate multi-head attention, including sparse attention, approx-
imate attention, sharing projections across attention heads, and lastly FlashAttention.
Now let’s leave multi-head attention behind and focus on the other major component
of the Transformer architecture, the feedforward neural networks, which we will
optimize using a technique named mixture of experts.

Scaling Up with Mixture of Experts

When we have a medical question, we ask a doctor. When we have a legal question,
we ask a lawyer. This idea of routing different requests to different experts was first
proposed in machine learning by Robert A. Jacobs, Michael I. Jordan, et al. in a
1991 paper.** They dubbed this technique mixture of experts (MoE). MoE remained
niche for over two decades, but it gained popularity when it was successfully applied
to transformers in a 2017 paper by Noam Shazeer et al.,” which introduced the
sparsely-gated MoE layer (I will simply call it the MoE layer).

In practice, as we will see, the “experts” don’t specialize across high-level domains
like humans do; rather, they focus on different regions of the input space at a fairly
low level, and there’s actually quite a lot of overlap between them. Moreover, an MoE
transformer contains several MoE layers, each with its own local set of experts, and
different tokens may be processed by different experts in each MoE layer. So it’s not
as though a medical question is handled by a medical transformer; instead, tokens
are split across several experts in each MoE layer. Therefore, the name “mixture
of experts” is misleading—it might be better to call them “sort-of specialized subnet-
works splitting subtasks” (SSSSS), but it’s not as catchy.

In any case, MoE transformers have been incredibly successful, so let’s see how the
MoE layer works.

24 Robert A. Jacobs, Michael I. Jordan, et al., “Adaptive mixtures of local experts” Neural computation 3.1: 79-87
(1991).

25 Noam Shazeer et al., “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”,
arXiv preprint arXiv:1701.06538 (2017).
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The Mixture of Experts Layer

The core idea is to replace the FFN in some transformer blocks (typically every 2 to
4 blocks) with an MoE layer composed of multiple FFNs, called experts, plus a small
router network that decides which expert(s) should process each input token (see
Figure 17-14).
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Figure 17-14. A modern MoE layer: this layer replaces the FFN module in each trans-
former block

o Each token begins its journey by going through the router network: its just
a small FFN (usually a single linear layer) with a softmax activation function.
This router outputs a vector w containing one router weight per expert. All the
weights add up to 1.

o Next, we find the top-k weights (e.g., kK = 2 in this example) and we route the
input token x to the corresponding k experts. All the other experts can take a nap.
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o Lastly, we compute a weighted sum of the top-k expert outputs: to be precise,
each output is multiplied by its corresponding routing weight, and all the weigh-
ted outputs are summed up. In some architectures with k > 1, the top-k weights
are normalized just before computing the final weighted sum.

The MoE architecture was gradually refined in later architectures, most notably
in GShard,? Switch Transformers,” Vision-MoE,*, GLaM,” and ST-MoE,* all pub-
lished by Google researchers between 2020 and 2022 (but of course research contin-
ued after that, and not just at Google).

Each expert can itself be an MoE layer, with its own router network
and sub-experts. The resulting MoE is called a hierarchical MoE,
and it can scale up to thousands of experts.

OK, that’s how MoE works, but what are its benefits?

Benefits of MoE

By routing each token to just a handful of experts out of dozens (or potentially
hundreds) of experts, we can keep computations low while vastly increasing the
model’s power. An MoE transformer is typically huge, often requiring multiple GPUs
to run, but it is much faster than its size would suggest, since each token only uses a
small subset of all model weights.

The benefits are particularly clear at inference time when generating text one token
at a time, since the MoE uses only the top-k experts for that token: it’s extremely fast,
and uses relatively little memory bandwidth since few model weights are needed.

However, during training and during the prefill stage at inference time, the MoE
must process potentially long sequences of tokens, and each token may be routed to
a different expert. As a result, most experts are likely to be needed simultaneously,

2

(=)}

Dmitry Lepikhin et al., “GShard: Scaling Giant Models with Conditional Computation and Automatic Shard-
ing”, arXiv preprint arXiv:2006.16668 (2020).

27 William Fedus et al., “Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient
Sparsity”, arXiv preprint arXiv:2101.03961 (2021).

Carlos Riquelme et al., “Scaling Vision with Sparse Mixture of Experts”, arXiv preprint arXiv:2106.05974
(2021).

29 Loic Themyr et al., “GLaM: Efficient Scaling of Language Models with Mixture-of-Experts”, arXiv preprint
arXiv:2112.06905 (2021).

30 “ST-MokE: Designing Stable and Transferable Sparse Expert Models”, arXiv preprint arXiv:2202.08906 (2022).
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even though each one will only process a few tokens: we lose most of the memory
bandwidth savings, but we still get a large computational benefit.

Sadly, there’s no free lunch: building, training, running, and even maintaining a large
MOoE transformer can be quite difficult and costly. Let’s see why.

The Challenges of MoEs

There are three major difficulties with MoEs: balancing the workload across experts,
reducing the overlap between experts, and finally engineering challenges. Let’s start
with load balancing.

Load balancing

The first major difficulty with MoEs is ensuring that the router distributes the work-
load evenly across experts, at least on average, especially during training. Indeed, if
an expert is worse than the others at any point during training, it will not be selected
by the router network, and as a result it will not be trained and will not improve.
It’s a classic rich-gets-richer feedback loop, which in this case leads to expert collapse,
meaning that the router network ends up completely ignoring most experts, favoring
a handful of lucky winners. This destroys the model’s accuracy and makes training
unstable.

To solve this issue, one common solution is to add an auxiliary load-balancing loss
that encourages the router network to evenly distribute the workload across experts
(the load-balancing loss of each MoE layer is just added to the overall loss). In the
original sparsely-gated MoE, this loss involved adding Gaussian noise with a trainable
per-expert scale just before computing the softmax, and the loss pushed the model
to give an equal expected load to each expert. However, in Switch Transformers and
most recent MoE architectures, the load-balancing loss is simpler and doesn’t require
adding noise at all (see Equation 17-4).

Equation 17-4. Auxiliary load-balancing loss, used in many recent MoE
transformers

N
Lip=aN ,Zlfy;Qyz
1=

In this equation:

o « is a hyperparameter you can tune: it determines how strongly the model will be
pushed toward fair load-balancing (e.g., 0.01).

N is the total number of experts (not just the top k).
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o f, is the proportion of tokens in the current batch that were assigned to the i*
expert.

o Q, is the mean routing weight assigned to the i expert in the batch.

This loss pushes every f, and Q, toward 1 / N: an equal share of the load for each
expert.

A couple additional techniques, introduced by the GShard authors, are often used to
better balance the load across experts:

Random routing
When k = 2, the top expert is always chosen, but the second is picked randomly,
with a probability proportional to its routing weight.

Expert capacity

Each expert can only process up to C tokens per batch, where C is a hyperpara-
meter called the expert capacity, typically a bit greater than the number of tokens
per batch divided by the total number of experts. When an expert has reached
its maximum capacity, its assigned tokens are typically re-routed to the other
experts. If all candidate experts are full then the token typically just skips the
MOoE layer: for this, the MoE layer outputs zero, but the skip connection around
the MoE layer allows the token to continue to the next transformer block. In
others architectures, such as some vision MoEs, the token may be dropped
entirely, so the output sequence is shorter.

Now let’s turn to the second major difficulty with MoEs: reducing overlap between
experts.

Reducing overlap between experts

You might expect the router network to send mathematical queries to a math expert,
and medical queries to medical experts, but as I mentioned earlier, the router seems
to focus on much lower-level features: it might send punctuation tokens and emojis
to one expert, adjectives and numbers to another, and so on. It’s better than nothing,
but you can see how this can lead to a large overlap across experts, since they all
end up having to learn about every possible topic. If all your experts are generalists,
then theyre not really experts at all! This redundancy effectively reduces the model’s
power, leading to lower accuracy.

One way to increase expert specialization is to use a more powerful router network,
but this comes at a cost. Another option, introduced in DeepSeek-V2, is to add shared
experts which are used for every token: these shared experts tend to learn the most
common cases, which encourages the routed experts to specialize on more specific
tasks. For example, DeepSeek-V3 uses 1 shared expert plus 256 routed experts (8
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active) in each MoE layer. Improving expert specialization is still an area of active
research.

Let’s now move on to the third major difficulty of MoEs: engineering.

Engineering challenges with MoEs

MoEs can be a major engineering challenge, both for training and for inference,
especially for the larger models. Here are just a few engineering challenges you may
face:

o MOE transformers can be so large that the experts must be sharded across
multiple GPUs, and even across multiple servers. This means that the inputs and
outputs of each MoE layer must be sent across devices or even across servers,
typically using all-to-all communication. This I/O can easily become a major
bottleneck. Moreover, it requires careful synchronization: for example, we must
wait for all expert outputs before we can compute the weighted sum.

« If the model is sharded across servers, the infrastructure must detect and handle
node failures. Monitoring is key.

» Tokens must be routed dynamically to the right experts, and batched to increase
GPU utilization. Batching is not as simple as in dense models.

o A few hot experts (overloaded) may slow down the whole model: you may want
to implement fine-grained monitoring to detect this and dynamically solve the
issue, for example by rerouting tokens, replicating experts, or autoscaling your
infrastructure.

In short, it takes quite a bit of complex and costly engineering to make large MoEs
production-ready at scale. This is why many early MoE models such as GLaM or
Switch were mostly research-only.

Now the good news is that there are now several open source libraries to train and
run MokEs efficiently, such as DeepSeek-MoE, so you don't need to reinvent the wheel.
There are also many pretrained MoE models available for download (see Table 17-2).

Table 17-2. Popular open source MoEs

Model name Release date Active/total params Active/total (+ shared) experts
Mixtral 8x7B Dec 2023 13B/478B 2/8

DBRX Instruct Mar 2024 36B /1328 4/16

Mixtral 8x22B Apr 2024 39B/141B 2/8

DeepSeek-V2 May 2024 21B /2368 6/160 (+2)

OpenMoE-8B Nov 2023 2B /8B 1/32

Grok-1 Mar 2024 86B/314B 2/8
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Model name Release date Active/total params Active/total (+ shared) experts

Jamba-1.5-L Aug 2024 94B /398B 2/16
OLMoE-7B Sep 2024 1B/7B 8/64

Aria (vision & language) Oct 2024 35Bt03.9B/258  6/64(+2)
DeepSeek-V3 Dec 2024 37B/671B 8/256 (+1)

If youd like to further explore the MoE literature, a great entry
point is the 2025 MoE survey by Siyuan Mu and Sen Lin.*

That’s all for MoEs. Now let’s look at techniques that will help you train transformers
faster!

Faster Training

Transformers are often very large and slow to train. There are two main reasons for
this: first, a larger model typically requires more computations than a smaller one;
second, a lot of data will need to be moved around in GPU VRAM, so the memory
bandwidth will become a bottleneck. Let’s take a 7B parameter model, for example:

Model weights
At 16-bit float precision, the weights take 14 GB of memory. At inference time,
that’s most of the memory you’ll need, but at training time, the list continues.
Firstly, when using mixed-precision training (see Appendix B), we also need a
32-bit master copy of the trainable weights: that’s another 28 GB.

Activations
During training, we must save all of the activations during the forward pass since
they are needed for the backward pass. The exact amount depends on the model
architecture, the batch size, the sequence length, and the float precision, but for a
7B parameter model, it's might be around 40 GB.

Gradients
We need one gradient per trainable parameter. If we train all 7B parameters, at
16-bit float precision, that’s 14 GB.

Optimizer states
Optimizers often require additional data for each trainable parameter. For exam-
ple, Adam requires two running averages for each trainable parameter: at 16-bit

31 Siyuan Mu and Sen Lin, “A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applica-
tions”, arXiv preprint arXiv:2503.07137 (2025).
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precision, this would be another 28 GB. However, for precision and training
stability, these are usually stored in 32-bit precision, so were talking about 56 GB!

That’s a total of 152 GB of memory for a 7B parameter model, even though were
using mixed-precision training! Your hardware might not have that much VRAM,
and even if it does, memory bandwidth saturation will be a nightmare.

One solution is to shrink the model: it will reduce both the computational cost and
the memory usage. This is discussed in Appendix B. You can also use the techniques
discussed earlier to accelerate MHA, or use MoE. In this section, we will cover a few
more ways to train transformers faster:

o Parameter-efficient fine-tuning (PEFT) reduces the number of trained parame-
ters, which reduces the size of the gradients and optimizer states, as well as
the size of the 32-bit master copy of the trainable parameters used for mixed-
precision training.

« Activation checkpointing reduces the size of the activations that we must save for
the backward pass: we already discussed it in Chapter 12, so in this chapter I'll
focus on how to apply it to transformers.

« Sequence packing and bucketing, to eliminate wasteful padding tokens.

« Gradient accumulation, where we reduce the memory load by processing multi-
ple batches per optimizer step.

o Parallelism, where we split the computations and memory load across multiple
GPUs.

Let’s start with PEFT.

Parameter-Efficient Fine-Tuning (PEFT)

You may occasionally need to train a transformer from scratch, but more often than
not you will instead download a pretrained model and fine-tune it for your task.
We saw how to do this in Chapter 15. To speed up fine-tuning, one approach is
to reduce the number of trainable parameters, thereby reducing the computational
and memory costs of computing and storing the trainable weights, gradients, and
optimizer states: this is called parameter-efficient fine-tuning (PEFT).

There are several PEFT techniques, but the most popular approach is to use adapters:
you freeze the weights of the large pretrained model, and insert several small traina-
ble adapters inside it, then fine-tune the resulting adapter model. Since the adapters
have few trainable parameters, the efficiency gain is substantial.

There are various ways to insert adapters; for example, prefix adapters use learnable
key/value prefixes (this is closely related to prompt tuning, which we briefly discussed
in Chapter 15). However, the most popular adapter technique is Low-Rank Adapta-
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tion (LoRA), which was proposed in 2021 by Microsoft researchers.”” Let’s see how it
works.

First, you freeze the pretrained model and choose some weight matrices that you
want to fine-tune using LoRA adapters: in general, it’s a good idea to adapt at least
the query and value projection matrices in every MHA layer. If you need even more
precision, at the cost of adding more adapters, you may also want to adapt the value
and output projection matrices in every MHA layer, and possibly even the weight
matrices in the FFN blocks. It’s a trade-off between efficiency and accuracy.

Second, each matrix multiplication XW, involving one of the chosen matrices W, is
replaced with XW_ + XBA, where X is the input matrix, W is the frozen pretrained
weight matrix, and A and B are the new adapter matrices—small and trainable. If W,
has a shape of d x k, then B is a d x r matrix and A is an r x k matrix, where r is a
hyperparameter (e.g., r = 8). In practice, this is usually implemented by attaching an
adapter module (containing two linear layers) to the layer we want to adapt, as shown
in Figure 17-15.

XW, + XBA
+
XW, XBA
T A
!
Linear A
Linear [
Linear
b A
Pretrained LoRA
layer X adapter

Figure 17-15. Low-Rank Adaptation

32 “LoRA: Low-Rank adaptation of large language models”, arXiv preprint arXiv:2106.09685 (2021).
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If the pretrained layer has a bias parameter, you can choose to
make it trainable or not (it’s the usual efficiency/quality trade-off).
However, the LoRA adapter does not have a bias parameter, as it
would be redundant.

You can usually start with r = 8, but you can reduce it (sometimes even down to 1)
and still get reasonably good results, or increase it to 16, 32, 64, or more if you want
to trade some speed and memory for higher quality.

And that’s it, youre ready to fine-tune the adapted model. Enjoy the speed boost and
the quality of the fine-tuned model!

But why? How can this technique offer both speed and quality? Well, the speed boost
is easy to explain: instead of fine-tuning d x k parameters, we fine-tune r x (d + k)
parameters. Since r is small relative to d and k, we have far fewer parameters to train,
meaning less computations and less risk of memory bandwidth saturation.

Moreover, even though BA is a fairly large d x k matrix, we never actually need to
evaluate it: indeed, when we compute XBA, we first calculate P = XB, whichisa b x r
matrix, where b is the batch size, then we compute PA, which is a b x k matrix.

Now why does LoRA lead to high-quality models? The authors reasoned that directly
fine-tuning the original pretrained model (without using LoRA) would turn W, into
Winea = W, + W, where W, is the difference between the original matrix W, and
the fine-tuned matrix W, They hypothesized that W, has a low “intrinsic” rank,
which would imply that it can be well approximated by the product of two low-rank
matrices (hence the name of the technique): in other words, W, = BA, where A and
B are both low-rank matrices. And this turns out to be true in practice: by keeping
W, frozen and adding BA to it, learning only matrices A and B, the resulting model
performs almost as well as full fine-tuning (while training far fewer parameters and
using much less memory).

To fine-tune a model using LoRA, you can use the Transformers and peft
libraries by Hugging Face. Both are preinstalled on Colab. Let's load a model
using the Transformers library, then create a LoRA model based on it using the
peft.get_peft_model():

import
from import AutoModelForCausallLM

model_id = "EleutherAI/gpt-neo-125M" # a small model for this example
model = AutoModelForCausallLM.from_pretrained(model_id, device_map="auto",
dtype=torch.float16)
lora_config = peft.LoraConfig(r=8, target_modules=["q_proj", "v_proj"])
peft_model = peft.get_peft_model(model, lora_config)
peft_model.print_trainable_parameters()
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Let’s go through this code:

o After the imports, we load a pretrained model using 16-bit precision.

o Next, we create a LoraConfig object, specifying the rank 7, and the name of the
layers we want to adapt.

o Then we call the peft.get_peft_model() function, passing it the model and the
config, and in return we get a parameter-efficient model, adapted using LoRA.
This API is nice and easy (there are many other options, so please see the
documentation for more details).

You can now fine-tune the model normally, just like we saw in Chapter 15.

After fine-tuning, you can optionally get rid of the adapters and replace each original
weight matrix W, with the matrix W gz, = W, + BA: this means that LoRA will have
zero computational or memory cost at inference time. To do this, you can simply call
the PEFT model’s merge_and_unload() method:

merged_model = peft_model.merge_and_unload()

However, if the original model is quantized (see Appendix B), you may be better off
without merging, keeping the adapters. Indeed, merging would require dequantizing
the weights first, then adding BA, then requantizing the result. This would lose
some precision, and since adapters are very lightweight, the efficiency gain would be
minimal.

In summary, PEFT reduces the number of trainable parameters, thereby reducing
computations and the amount of memory needed during fine-tuning, and resulting
in a large speed boost. Now let’s turn to activation checkpointing, which drastically
reduces memory usage for the activations during training, in exchange for a slightly
higher computational cost.

Activation Checkpointing

We already discussed activation checkpointing in Chapter 12 and we saw how to
implement it in PyTorch, but not with the Transformers library, so this short section
will focus on that. As a quick reminder, activation checkpointing is a technique
to reduce memory usage for the activations during training: instead of saving all
activations during the forward pass, we only save some of them, called checkpoints
(e.g., just the main layer outputs), then during the backward pass we recompute
the missing activations whenever needed, using the checkpoints. The result is less
memory usage, but more computations.

With the Transformers library, implementing activation checkpointing is as simple
as setting gradient_checkpointing=True in the TrainingArguments object that you
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pass to your Trainer (it’s often used in conjunction with mixed-precision training, by
setting fp16=True or bf16=True):

from import TrainingArguments

args = TrainingArguments(output_dir="./my_great_model", num_train_epochs=3,
per_device_train_batch_size=8,
gradient_checkpointing=True, fp16=True)
Another option is to enable activation checkpointing directly on the model itself by
calling its gradient_checkpointing_enable() method (alternatively, you can do this
on individual modules, for fine-grained control).

Now let’s move on to sequence packing, which can accelerate training when the input
sequences have variable lengths.

Sequence Packing and Bucketing

When training with variable-length sequences, we usually pad them to the same
length when creating a batch. But this wastes compute and memory on many pad-
ding tokens, and results in batches of variable size, which are not hardware-friendly.

Another option is sequence packing: we concatenate multiple input sequences to
form a much longer sequence, of length L. If the packed sequence is not exactly L
tokens long, we can either crop the excess tokens or use padding tokens to reach L.
Alternatively, we can pack all the sequences in the batch into a single sequence: no
need for cropping or padding. This is called flattening.

Sequence packing gets rid of all padding tokens (when cropping or flattening) or
most of them (when padding), and it also ensures higher GPU utilization, which
accelerates training. However, it requires a lot of care:

o The attention masks must be adjusted to ensure that tokens from one sentence
cannot attend to tokens in other sentences.

o Positional encodings should also be adjusted to ensure that the positions are
relative to the start of each sentence.

o The loss must be computed on the right outputs. This is mostly a challenge for
encoder-only models, since they often have a fixed number of outputs (e.g., for
the [CLS] token), so we must keep track of their indices to properly compute the
loss.

o Lastly, the implementation of MHA must be smart enough to handle sparse
attention masks: indeed, a naive implementation of MHA would run into the
quadratic attention problem, since the packed sequence can be very long: this
would entirely negate the advantages of sequence packing. However, a smart
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implementation can skip computations for the parts of the attention mask that
are full of zeros.

Sadly, PyTorch doesn't provide a simple way to implement sequence packing: you
have to manually take care of everything yourself. However, the Transformers library
provides a convenient solution: just set the data_collator argument in your Trainer
to an instance of the DataCollatorWithFlattening class. This will automatically take
care of sequence packing for you, using the flattening strategy. Importantly, it uses
position IDs and FlashAttention-2 to efficiently handle sparse attention masks.

A much simpler—albeit less efficient—technique, often used for encoder-only mod-
els, is to create batches of sequences of similar lengths: this is called sequence
bucketing. This drastically reduces the number of padding tokens required, and it’s
much simpler to implement in PyTorch. One approach is to split your dataset into
buckets depending on the sequence length (e.g., [1-10], [11-20], [21-30], and so on),
then when creating a batch, pick a bucket randomly and sample sequences from it.
Another approach is to sort the dataset by length, then when creating a batch, pick a
random index in the sorted dataset, and sample nearby sequences.

Figure 17-16 compares regular batching with sequence packing and sequence bucket-
ing.

Default batching Bucketing

Packing and padding Packing and cropping "1}

1] 2 m 1] 2 !
3 | 4 | 5 3 | 4 |5]
|

Packing and flattening
L] 2 I 3 [ 4 | 5 |

Figure 17-16. Sequence packing and sequence bucketing versus regular batching

Next up is gradient accumulation, which lets you increase the batch size without
using more memory.
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Gradient Accumulation

Instead of performing an optimizer step for each input batch, we can accumulate
gradients across multiple batches, and only perform one optimizer step every n
batches using the accumulated gradients. The procedure is as follows:

o Set the gradients to zero.
» Compute the gradients for batch 1, but do not perform any optimizer step.
« Repeat for batches 2 to n, accumulating the gradients.

o After n batches, perform an optimizer step using the accumulated gradients
(optionally divided by n to maintain the gradient scale).

« Rinse and repeat for the next set of n batches.

This approach is mathematically equivalent to increasing the batch size by a factor
of n, but it uses much less memory. This makes it possible to train the model with a
large effective batch size without running into out-of-memory errors or slowdowns
caused by memory bandwidth saturation. However, gradient accumulation is not
quite as computationally efficient as increasing the batch size (assuming you have
enough memory), since the GPU doesn't process as much data in parallel.

Implementing gradient accumulation in PyTorch is straightforward:

[...] # create the model, optimizer, criterion, and data_loader
accumulation_steps = 4
optimizer.zero_grad() # reset gradients before starting
for batch_index, (X_batch, y_batch) in enumerate(data_loader):
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
y_pred = model(X_batch)
loss = criterion(y_pred, y_batch)
loss = loss / accumulation_steps
loss.backward()
if (batch_index + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()

The code is mostly self-explanatory, but it's important to note that the gradients must
be set to zero before starting the training loop. Dividing the loss by the number of
accumulation steps also divides the gradients by the same number, which ensures that
we get the same total gradients as if we had used a larger batch size (alternatively, you
could divide the learning rate by the number of accumulation steps).
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If the model uses batch-normalization, or if you use a batch-wide
loss (e.g., the MoE load-balancing loss), then gradient accumula-
tion will not be equivalent to increasing the batch size. This is

. partly why transformers use layer-norm instead of batch-norm. As
for batch-wide losses, there’s sadly no easy fix, but training might
still work fine; you just have to test it.

Implementing gradient accumulation with the Transformers library is as simple as
can be: just set gradient_accumulation_steps to the desired number in the Trainin
gArguments. That’s it!

Last but not least, let’s discuss various ways you can speed up training by using
multiple GPUs, possibly across multiple servers.

Speeding Up Training Using Parallelism

If we can manage to efficiently use multiple GPUs in parallel during training, we can
potentially achieve a linear speed up, proportional to the number of GPUs. There
are many ways to parallelize training: across the data dimension (data parallelism),
across the features dimension (tensor parallelism), across model layers (pipeline
parallelism), across the sequence dimension in the case of transformers (context
parallelism), across experts in the case of MoE models (expert parallelism), and more.
These techniques can also be combined. Lets start with data parallelism, which is
arguably the simplest approach.

Data Parallelism

The core idea behind data parallelism is to split each input batch into multiple
chunks, and process each chunk on a different device, all in parallel. The most
common strategy is to replicate the model across all devices and keep the replicas
synchronized so they always have the same model parameters. This is called the
mirrored strategy.

PyTorch provides a basic implementation of data parallelism using the mirrored
strategy for a single-machine setup: just wrap your model in a torch.nn.DataParal
lel object, optionally specifying the IDs of the devices to use (by default it will use all
available devices), then train the resulting model as usual. For example:

dp_model = torch.nn.DataParallel(model, device_ids=[0, 1, 2])
[...] # train dp_model normally

That’s it, all the complexity is taken care of for you by the DataParallel (DP)
wrapper. During the forward pass, it splits the input batch across GPUs, broadcasts
the model’s latest parameters from the primary GPU (where the wrapped model
lives) to the other GPUs, runs the forward pass in parallel on all replicas (each one
processing its own chunk of data), and finally gathers and concatenates the outputs
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on the primary GPU. During training, your code then uses this output to compute
the loss (usually on the same device). Then, during the backward pass, the gradients
flow back through all the GPUs in parallel, and all the gradients are gathered and
summed up on the primary GPU. Lastly, the gradient descent step only takes place on
the primary GPU, and the model copies are discarded (until new copies are made at
the next iteration).

This works and it’s very easy to use, but its really not the most efficient approach
since the whole model gets copied to all GPUs at each iteration. Moreover, the
primary GPU has more work and uses more memory than the other GPUs. Luckily,
PyTorch provides a much better implementation named Distributed Data Parallel
(DDP) which is far more efficient and also works with GPUs located on separate
machines. Moreover, DDP uses multiprocessing rather than multithreading, which
allows it to work around Python’s global interpreter lock (GIL). Unless you want to
run a quick test, I highly recommend you use DDP instead of torch.nn.DataParal
lel.

With DDP (see Figure 17-17), the model is only replicated once upon startup. More-
over, at each training step, all the replicas perform the entire forward pass and
backward pass independently and in parallel (each on its own local chunk of data).
The replicas then synchronize only to efficiently compute the mean of their gradients;
then they all perform the exact same optimizer step using the same mean gradients,
so they end up with the same updated model parameters without having to copy the
whole model at each iteration.
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Figure 17-17. DDP implements data parallelism with the mirrored strategy; the replicas

collaborate to compute the mean gradients using an all-reduce operation

You may be wondering how DDP efficiently computes the mean of all the gradients
from all devices and distributes the result to all devices? This is done using an all-
reduce algorithm, a class of algorithms where multiple nodes collaborate to efficiently
perform a reduce operation (such as computing the mean, sum, and max), while
ensuring that all nodes compute the same final result. Fortunately, there are off-the-
shelf implementations of such algorithms, such as the Nvidia Collective Communica-
tions Library (NCCL) or PyTorch Gloo. DDP relies on these implementations under
the hood, depending on your hardware. Please check out the DDP documentation for

more details.
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The mirrored strategy only works if all GPUs stay perfectly
synchronized after each training step. Even tiny differences might
compound over time and break synchronization. To avoid this,
the all-reduce operation must produce the exact same result across
all GPUs (NCCL and Gloo guarantee that), and the optimizer
step must update the parameters in exactly the same way on each
replica. In practice, this requires consistent hardware and software
environments across all devices, and you must also ensure that
the optimizer step only uses deterministic operations. Please see
PyTorch’s documentation for more details on how to make your
code deterministic.

Data parallelism is great, but what if the whole model does not fit on a single GPU?
For example, many large transformers are too big for even the largest GPUs. So let’s
try to split the neural net itself across GPUs, rather than entirely replicating it. This is
called model parallelism.

Model Parallelism

There are many ways to split a neural net, each with different trade-offs. For example,
Figure 17-18 shows how a fully connected network can be sliced horizontally—which
is called pipeline parallelism (PP)—or vertically—which is called tensor parallelism
(TP). In PP, the model is split into consecutive groups of layers called stages (e.g., one
transformer block per GPU). In TP, each layer is split along the features dimension:
for example, a Linear layer with 512 inputs and 512 outputs might be split into two
Linear layers, each with 512 inputs and 256 outputs, and each living on its own GPU.
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Figure 17-18. Pipeline parallelism versus tensor parallelism

The benefit of TP is that it allows you to train a very wide model since each GPU
handles a different vertical slice. However, during the forward pass, each partial layer
must send its outputs to every other device before the next layer can start, and the
same is true during the backward pass. Luckily, modern interconnects (NVLink,
NVSwitch, InfiniBand) have very high bandwidth and low latency, and we can use
optimized all-gather operations that are designed to efficiently concatenate chunks of
data spread across many nodes and ensure that each node ends up with a full copy.
Nevertheless, I/O bottlenecks can be a major challenge.

The benefit of PP is that you can train a very deep model, since each stage lives on
a separate GPU. In general, PP doesn't require as much I/O as TP, since we only
need two communications per stage (one receive, one send) during the forward pass,
and similarly two during the backward pass. However, a naive implementation would
only use one GPU at a time, as the current batch progresses through each stage
sequentially.

Fortunately, with some smart engineering, it's possible to make all GPUs work in
parallel on different batches. That’s a mix of data parallelism and pipeline parallelism.
This idea was first proposed in a 2018 paper® by a team of researchers from Carnegie
Mellon University, Stanford University, and Microsoft Research. In their system,
named PipeDream, the model is split into successive stages, and each device alternates

33 Aaron Harlap et al., “PipeDream: Fast and Efficient Pipeline Parallel DNN Training”, arXiv preprint
arXiv:1806.03377 (2018).
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a forward pass using a batch from its input queue, then a backward pass using a batch
from its gradients queue, as shown in Figure 17-19. This results in an asynchronous
pipeline in which all machines work in parallel with very little idle time.

Stage 2 Stage3
Forward j Forward-}@‘
I Loss|
Backward . { 4 /~Backward Backward ¢——

Figure 17-19. PipeDream’s pipeline parallelism

However, as it’s presented here, PipeDream would not work so well. To understand
why, consider mini-batch #5 in Figure 17-19: when it went through stage 1 during
the forward pass, the gradients from mini-batch #4 had not yet been backpropaga-
ted through that stage, but by the time #5% gradients flow back to stage 1, #4’s
gradients will have been used to update the model parameters, so #5’s gradients
will be a bit outdated. Such outdated gradients are called stale gradients; they can
slow down convergence, introducing noise and wobble effects (the learning curve
may contain temporary oscillations), or they can even make the training algorithm
diverge. Indeed, if there are intermediate weight updates between the moment some
gradients are computed and the moment they are applied, these gradients may not
point in the right direction (see Figure 17-20).
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Figure 17-20. Stale gradients when using asynchronous updates

The more stages there are, the worse this problem becomes. The paper’s authors pro-
posed methods to mitigate this issue, though: for example, each stage saves weights
during forward propagation and restores them during backpropagation, to ensure

58 | Chapter 17: Speeding Up Transformers



that the same weights are used for both the forward pass and the backward pass. This
is called weight stashing. Thanks to this, PipeDream demonstrated impressive scaling
capability.

If you don’t have multiple GPUs to train or fine-tune large trans-
formers, you can rent them using platforms such as Amazon
Web Services, Google Cloud Platform, Microsoft Azure, RunPod,
Lambda Labs, CoreWeave, Vast.ai, TensorDock, Paperspace, and
many more.

When using transformers, there are two more ways to split the computations across
GPUs:

Context parallelism

Each GPU only stores and processes a subset of each input sequence, along
the sequence dimension. For example, GPU #1 gets tokens for positions 1 to
100, GPU #2 gets tokens 101 to 200, and so on. In the MHA layers, each GPU
computes matrices Q, K, and V only for its own tokens, but then all GPUs share
their K and V matrices with every other GPU, so each GPU can then compute
the attention scores and outputs for its own tokens. This reduces activation
memory per GPU, since each GPU only needs to process a fraction of the token
activations. It also reduces compute per GPU, since each GPU computes only a
fraction of the attention matrix.

Expert parallelism
In an MoE transformer, the experts can be distributed across different GPUs. The
main difficulty is that this requires all-to-all communication (not just all-gather
or all-reduce) to send the right tokens to the right experts. This is often done
twice per MoE layer: once to send tokens in, once to return outputs. So once
again, I/O bandwidth can quickly become the main bottleneck.

Another important technique to speed up training across multiple GPUs is the Zero
Redundancy Optimizer (ZeRO), introduced in 2019 by Microsoft researchers.® It
shards the optimizer states across GPUs, which reduces memory usage significantly.

This all sounds terribly difficult to implement, and it is. Luckily, some excellent
open source libraries wrap all the complexity and allow you to efficiently train large
transformers across multiple servers and GPU devices in just a few lines of code.
Here are the main ones:

34 Samyam Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”,
arXiv preprint arXiv:1910.02054 (2019).
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DeepSpeed, by Microsoft
DeepSpeed is great for extreme scale multiserver training. It implements the
ZeRO optimizer, supports offloading optimizer parameters, and many more
features.

Megatron-LM, by Nvidia
This library is more focused on single-server training using model parallelism,
but it is making progress on multiserver as well. It offers great speed thanks
to highly optimized kernels, tensor parallelism, pipeline parallelism, mixed preci-
sion, and activation checkpointing.

Fully Sharded Data Parallelism (FSDP), by the PyTorch core team
As you might expect from the PyTorch team, FSDP (successor or FairScale) is
fully integrated in PyTorch and offers a nice and simple API. FSDP shards model
parameters, gradients, and optimizer states across devices. However, it is not
quite as feature-rich as DeepSpeed.

Accelerate, by Hugging Face
As always with Hugging Face libraries, Accelerate is very user friendly. It pro-
vides a unified abstraction layer on top of other libraries, including DeepSpeed
and FSDP. It supports mixed-precision, gradient accumulation, and more. With
Accelerate, you can write simple, device-agnostic PyTorch code, then use a con-
figuration CLI to run it on any distributed setup. Under the hood, it may use
DeepSpeed, FSDP, or even PyTorch’s built-in DDP.

For more details on training large transformers on GPU clusters,
I recommend The Ultra-Scale Playbook: Training LLMs on GPU
Clusters by the Hugging Face team.

Wow, we've covered quite a few techniques in this chapter! We looked at KV caching,
speculative decoding, and other techniques to accelerate decoding, then we explored
many ways to accelerate multi-head attention, from sparse attention methods to
approximate attention methods and sharing projection matrices across attention
heads, and of course FlashAttention, then we saw how to scale transformers using
mixture of experts, and finally we looked at various ways to accelerate training,
including parameter-efficient fine-tuning techniques such as LoRA, activation check-
pointing, sequence packing and bucketing, gradient accumulation, and finally distrib-
uting your data and computations across multiple GPUs. Phew!

In the next chapter (which you will find in the main book), we will switch to an
entirely different topic: representation learning and generative ML using autoencod-
ers, generative adversarial networks (GANSs), and diffusion models.
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Exercises

Y % N

10.

11.

12.

13.

. What is KV caching, and what is it used for? Is it best for training or inference? Is

it best for encoder-only models, or decoder-only models?

. When would you want to use speculative decoding? How does it work? Can you

use any draft model or are there some constraints?

. Can you name several techniques designed specifically to parallelize text genera-

tion?

What is the core idea of all sparse attention methods? Can you name some of the
most important ones and summarize their main ideas and benefits?

Can you name a low-rank attention method? How about a kernel-based attention
method? How do they work?

What are the trade-offs when tweaking the group size in GQA?

Does multi-head latent attention increase the KV cache size? Why?
What are the main types of memory in a GPU?

Why is FlashAttention so much faster than previous implementations?

What are the main challenges when training an MoE model? What are some of
the most common solutions?

While training a large transformer, what are the four main causes of memory
saturation? Can you name the main techniques that can reduce each of them?

Choose a large transformer model and try to fine-tune it on the dataset of your
choice using LoRA.

If you have access to multiple GPUs, try using Hugging Face Accelerate to
fine-tune a large transformer model on the dataset of your choice.
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