O'REILLY"

Hands-On Wk €
Machine Learnlng
with Scikit-Learn
and PyTlorch

Concepts, Tools, and Techniques
to Build Intelligent Systems

Aurélien Géron






Online Bonus Content for
Hands-On Machine Learning
with Scikit-Learn and PyTorch

Aurélien Geron

O'REILLY"



Hands-On Machine Learning with Scikit-Learn and PyTorch
by Aurélien Geron

Copyright © 2026 Aurélien Geron. All rights reserved.
Published by O’Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa Rosa, CA 95401.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu-
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield Indexer: Potomac Indexing LLC
Develeopment Editor: Michele Cronin Cover Designer: Susan Brown
Production Editor: Beth Kelly Cover lllustrator: José Marzan Jr.
Copyeditor: Sonia Saruba Interior Designer: David Futato
Proofreader: Kim Cofer Interior lllustrator: Kate Dullea
October 2025: First Edition

Revision History for the First Edition
2025-10-22: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9798341607989 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. Hands-On Machine Learning with
Scikit-Learn and PyTorch, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

979-8-341-60798-9
[LSI]


https://oreilly.com
mailto:corporate@oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9798341607989

APPENDIX F
Other Popular ANN Architectures

In this appendix I will give a quick overview of a few historically important neural
network architectures that are much less used today than deep Multilayer Perceptrons
(Chapter 9), convolutional neural networks (Chapter 12), recurrent neural networks
(Chapter 13), transformers (Chapter 15), or autoencoders (Chapter 18). They are
often mentioned in the literature, and some are still used in a range of applications, so
it is worth knowing about them. Additionally, we will discuss deep belief nets, which
were the state of the art in Deep Learning until the early 2010s.

Hopfield Networks

Hopfield networks were first introduced by W. A. Little in 1974, then popularized by
J. Hopfield in 1982. They are associative memory networks: you first teach them some
patterns, and then when they see a new pattern they (hopefully) output the closest
learned pattern. This made them useful for character recognition, in particular,
before they were outperformed by other approaches: you first train the network by
showing it examples of character images (each binary pixel maps to one neuron), and
then when you show it a new character image, after a few iterations it outputs the
closest learned character.

Hopfield networks are fully connected graphs (see Figure F-1); that is, every neuron
is connected to every other neuron. Note that in the diagram the images are 6 x
6 pixels, so the neural network on the left should contain 36 neurons (and 630
connections), but for visual clarity a much smaller network is represented.




Inputl, ToutpUt ¢ Input
(N pattern

Stable
pattern

The training algorithm works by using Hebb’s rule (see the section about the Percep-
tron in Chapter 9): for each training image, the weight between two neurons is
increased if the corresponding pixels are both on or both off, but decreased if one
pixel is on and the other is off.

Figure F-1. Hopfield network

To show a new image to the network, you just activate the neurons that correspond to
active pixels. The network then computes the output of every neuron, and this gives
you a new image. You can then take this new image and repeat the whole process.
After a while, the network reaches a stable state. Generally, this corresponds to the
training image that most resembles the input image.

A so-called energy function is associated with Hopfield nets. At each iteration, the
energy decreases, so the network is guaranteed to eventually stabilize to a low-energy
state. The training algorithm tweaks the weights in a way that decreases the energy
level of the training patterns, so the network is likely to stabilize in one of these low-
energy configurations. Unfortunately, some patterns that were not in the training set
also end up with low energy, so the network sometimes stabilizes in a configuration
that was not learned. These are called spurious patterns.

Another major flaw with Hopfield nets is that they don’t scale very well—their
memory capacity is roughly equal to 14% of the number of neurons. For example,
to classify 28 x 28-pixel images, you would need a Hopfield net with 784 fully
connected neurons and 306,936 weights. Such a network would only be able to learn

2 | Appendix F: Other Popular ANN Architectures



about 110 different characters (14% of 784). Thats a lot of parameters for such a
small memory.

Boltzmann Machines

Boltzmann machines were invented in 1985 by Geoffrey Hinton and Terrence Sejnow-
ski. Just like Hopfield nets, they are fully connected ANNs, but they are based on
stochastic neurons: instead of using a deterministic step function to decide what
value to output, these neurons output 1 with some probability, and 0 otherwise. The
probability function that these ANNs use is based on the Boltzmann distribution
(used in statistical mechanics), hence their name. Equation F-1 gives the probability
that a particular neuron will output 1.

Equation F-1. Probability that the i" neuron will output 1

N
Zj= 158+ by
T

S(next step) _ l) -0

7

o s;is the j™ neuron’s state (0 or 1).
+ w;; is the connection weight between the i and j™ neurons. Note that w;; = 0.

o b, is the i™ neurons bias term. We can implement this term by adding a bias
neuron to the network.

o N is the number of neurons in the network.

o T is a number called the network’s temperature; the higher the temperature, the
more random the output is (i.e., the more the probability approaches 50%).

o ois the logistic function.

Neurons in Boltzmann machines are separated into two groups: visible units and
hidden units (see Figure F-2). All neurons work in the same stochastic way, but the
visible units are the ones that receive the inputs and from which outputs are read.

Because of its stochastic nature, a Boltzmann machine will never stabilize into a fixed
configuration; instead, it will keep switching between many configurations. If it is
left running for a sufficiently long time, the probability of observing a particular
configuration will only be a function of the connection weights and bias terms, not
of the original configuration (similarly, after you shuffle a deck of cards for long
enough, the configuration of the deck does not depend on the initial state). When
the network reaches this state where the original configuration is “forgotten,” it is said
to be in thermal equilibrium (although its configuration keeps changing all the time).
By setting the network parameters appropriately, letting the network reach thermal

Other Popular ANN Architectures | 3



equilibrium, and then observing its state, we can simulate a wide range of probability

distributions. This is called a generative model.
Visible - Hidden

Figure F-2. Boltzmann machine

Training a Boltzmann machine means finding the parameters that will make the
network approximate the training set’s probability distribution. For example, if there
are three visible neurons and the training set contains 75% (0, 1, 1) triplets, 10% (0,
0, 1) triplets, and 15% (1, 1, 1) triplets, then after training a Boltzmann machine,
you could use it to generate random binary triplets with about the same probability
distribution. For example, about 75% of the time it would output the (0, 1, 1) triplet.

Such a generative model can be used in a variety of ways. For example, if it is trained
on images, and you provide an incomplete or noisy image to the network, it will
automatically “repair” the image in a reasonable way. You can also use a generative
model for classification. Just add a few visible neurons to encode the training image’s
class (e.g., add 10 visible neurons and turn on only the fifth neuron when the training

4 | Appendix F: Other Popular ANN Architectures



image represents a 5). Then, when given a new image, the network will automatically
turn on the appropriate visible neurons, indicating the image’s class (e.g., it will turn
on the fifth visible neuron if the image represents a 5).

Unfortunately, there is no efficient technique to train Boltzmann machines. However,
fairly efficient algorithms have been developed to train restricted Boltzmann machines
(RBM).

Restricted Boltzmann Machines

An RBM is simply a Boltzmann machine in which there are no connections between
visible units or between hidden units, only between visible and hidden units. For
example, Figure F-3 represents an RBM with three visible units and four hidden
units.

-~

*, Hidden
| layer

N
\ Visible
]

, layer

Input Output

Figure F-3. Restricted Boltzmann machine

A very efficient training algorithm called Contrastive Divergence was introduced in
2005 by Miguel A. Carreira-Perpifidn and Geoffrey Hinton.! Here is how it works: for
each training instance x, the algorithm starts by feeding it to the network by setting
the state of the visible units to x,, x,, -*-, x,. Then you compute the state of the hidden
units by applying the stochastic equation described before (Equation F-1). This gives
you a hidden vector h (where F; is equal to the state of the i unit). Next you compute
the state of the visible units, by applying the same stochastic equation. This gives you

1 Miguel A. Carreira-Perpifian and Geoffrey E. Hinton, “On Contrastive Divergence Learning;” Proceedings of
the 10th International Workshop on Artificial Intelligence and Statistics (2005): 59-66.

Other Popular ANN Architectures | 5


https://homl.info/135
https://homl.info/135

a vector x". Then once again you compute the state of the hidden units, which gives
you a vector h'. Now you can update each connection weight by applying the rule in
Equation F-2, where 7 is the learning rate.

Equation F-2. Contrastive divergence weight update

ww <« QU?)] + n(XhT - X/h/T)

The great benefit of this algorithm is that it does not require waiting for the network
to reach thermal equilibrium: it just goes forward, backward, and forward again, and
that’s it. This makes it incomparably more efficient than previous algorithms, and it
was a key ingredient to the first success of Deep Learning based on multiple stacked
RBMs.

Deep Belief Nets

Several layers of RBMs can be stacked; the hidden units of the first-level RBM serve
as the visible units for the second-layer RBM, and so on. Such an RBM stack is called
a deep belief net (DBN).

Yee-Whye Teh, one of Geoffrey Hinton’s students, observed that it was possible to
train DBNs one layer at a time using Contrastive Divergence, starting with the lower
layers and then gradually moving up to the top layers. This led to the groundbreaking
article that kickstarted the Deep Learning tsunami in 2006.2

Just like RBMs, DBNs learn to reproduce the probability distribution of their inputs,
without any supervision. However, they are much better at it, for the same reason that
deep neural networks are more powerful than shallow ones: real-world data is often
organized in hierarchical patterns, and DBNs take advantage of that. Their lower
layers learn low-level features in the input data, while higher layers learn high-level
features.

Just like RBMs, DBNs are fundamentally unsupervised, but you can also train them
in a supervised manner by adding some visible units to represent the labels. More-
over, one great feature of DBNs is that they can be trained in a semisupervised
fashion. Figure F-4 represents such a DBN configured for semisupervised learning.

2 Geoffrey E. Hinton et al., “A Fast Learning Algorithm for Deep Belief Nets,” Neural Computation 18 (2006):
1527-1554.

6 | Appendix F: Other Popular ANN Architectures


https://homl.info/136
https://homl.info/136

RBM 3

RBM 2

Input Output
labels

RBM 1

Input Output
features

Figure F-4. A deep belief network configured for semisupervised learning

First, RBM 1 is trained without supervision. It learns low-level features in the training
data. Then RBM 2 is trained with RBM 1’ hidden units as inputs, again without
supervision: it learns higher-level features (note that RBM 2’s hidden units include
only the three rightmost units, not the label units). Several more RBMs could be
stacked this way, but you get the idea. So far, training was 100% unsupervised. Lastly,
RBM 3 is trained using RBM 2’s hidden units as inputs, as well as extra visible
units used to represent the target labels (e.g., a one-hot vector representing the
instance class). It learns to associate high-level features with training labels. This is
the supervised step.

At the end of training, if you feed RBM 1 a new instance, the signal will propagate
up to RBM 2, then up to the top of RBM 3, and then back down to the label units;
hopefully, the appropriate label will light up. This is how a DBN can be used for
classification.

One great benefit of this semisupervised approach is that you dont need much
labeled training data. If the unsupervised RBMs do a good enough job, then only
a small amount of labeled training instances per class will be necessary. Similarly, a
baby learns to recognize objects without supervision, so when you point to a chair
and say “chair,” the baby can associate the word “chair” with the class of objects it has
already learned to recognize on its own. You don’t need to point to every single chair

Other Popular ANN Architectures | 7



and say “chair”; only a few examples will suffice (just enough so the baby can be sure
that you are indeed referring to the chair, not to its color or one of the chair’s parts).

Quite amazingly, DBNs can also work in reverse. If you activate one of the label units,
the signal will propagate up to the hidden units of RBM 3, then down to RBM 2, and
then RBM 1, and a new instance will be output by the visible units of RBM 1. This
new instance will usually look like a regular instance of the class whose label unit you
activated. This generative capability of DBNs is quite powerful. For example, it has
been used to automatically generate captions for images, and vice versa: first a DBN is
trained (without supervision) to learn features in images, and another DBN is trained
(again without supervision) to learn features in sets of captions (e.g., “car” often
comes with “automobile”). Then an RBM is stacked on top of both DBNs and trained
with a set of images along with their captions; it learns to associate high-level features
in images with high-level features in captions. Next, if you feed the image DBN an
image of a car, the signal will propagate through the network, up to the top-level
RBM, and back down to the bottom of the caption DBN, producing a caption. Due to
the stochastic nature of RBMs and DBNS, the caption will keep changing randomly,
but it will generally be appropriate for the image. If you generate a few hundred
captions, the most frequently generated ones will likely be a good description of the
image.?

Self-Organizing Maps

Self-organizing maps (SOMs) are quite different from all the other types of neural
networks we have discussed so far. They are used to produce a low-dimensional
representation of a high-dimensional dataset, generally for visualization, clustering,
or classification. The neurons are spread across a map (typically 2D for visualization,
but it can be any number of dimensions you want), as shown in Figure F-5, and each
neuron has a weighted connection to every input (note that the diagram shows just
two inputs, but there are typically a very large number, since the whole point of SOMs
is to reduce dimensionality).

3 See this video by Geoffrey Hinton for more details and a demo: https://homl.info/137.

8 | Appendix F: Other Popular ANN Architectures


https://homl.info/137

Figure F-5. Self-organizing map

Once the network is trained, you can feed it a new instance and this will activate
only one neuron (i.e., one point on the map): the neuron whose weight vector is
closest to the input vector. In general, instances that are nearby in the original input
space will activate neurons that are nearby on the map. This makes SOMs useful not
only for visualization (in particular, you can easily identify clusters on the map), but
also for applications like speech recognition. For example, if each instance represents
an audio recording of a person pronouncing a vowel, then different pronunciations
of the vowel “a” will activate neurons in the same area of the map, while instances
of the vowel “¢” will activate neurons in another area, and intermediate sounds will

« »
generally activate intermediate neurons on the map.

One important difference from the other dimensionality reduction
techniques discussed in Chapter 7 is that all instances get mapped
to a discrete number of points in the low-dimensional space (one
point per neuron). When there are very few neurons, this techni-
que is better described as clustering rather than dimensionality
reduction.

Other Popular ANN Architectures | 9




The training algorithm is unsupervised. It works by having all the neurons compete
against each other. First, all the weights are initialized randomly. Then a training
instance is picked randomly and fed to the network. All neurons compute the dis-
tance between their weight vector and the input vector (this is very different from
the artificial neurons we have seen so far). The neuron that measures the smallest
distance wins and tweaks its weight vector to be slightly closer to the input vector,
making it more likely to win future competitions for other inputs similar to this one.
It also recruits its neighboring neurons, and they too update their weight vectors to
be slightly closer to the input vector (but they don’t update their weights as much as
the winning neuron). Then the algorithm picks another training instance and repeats
the process, again and again. This algorithm tends to make nearby neurons gradually
specialize in similar inputs.*

4 You can imagine a class of young children with roughly similar skills. One child happens to be slightly better
at basketball. This motivates them to practice more, especially with their friends. After a while, this group
of friends gets so good at basketball that other kids cannot compete. But that’s okay, because the other kids
specialize in other areas. After a while, the class is full of little specialized groups.

10 | Appendix F: Other Popular ANN Architectures



	Copyright
	Table of Contents
	Chapter 17. Speeding Up Transformers
	Faster Decoding at Inference Time
	Key/Value Caching
	Speculative Decoding
	Main Approaches to Parallelize Decoding

	Speeding Up Multi-Head Attention
	Sparse Attention
	Approximate Attention
	Sharing Projections Across Attention Heads
	FlashAttention: A Fast and Accurate Attention Implementation

	Scaling Up with Mixture of Experts
	The Mixture of Experts Layer
	Benefits of MoE
	The Challenges of MoEs

	Faster Training
	Parameter-Efficient Fine-Tuning (PEFT)
	Activation Checkpointing
	Sequence Packing and Bucketing
	Gradient Accumulation
	Speeding Up Training Using Parallelism

	Exercises

	Appendix A. App A
	Appendix B. App B
	Appendix C. Support Vector Machines
	Linear SVM Classification
	Soft Margin Classification

	Nonlinear SVM Classification
	Polynomial Kernel
	Similarity Features
	Gaussian RBF Kernel
	SVM Classes and Computational Complexity

	SVM Regression
	Under the Hood of Linear SVM Classifiers
	The Dual Problem
	Kernelized SVMs

	Exercises

	Appendix D. Relative Positional Encoding
	Relative Position Encodings (RPE)
	Rotary Position Embeddings (RoPE)
	Attention with Linear Biases (ALiBi)

	Appendix E. State-Space Models (SSMs)
	Traditional SSMs
	Legendre Memory Unit (LMU)
	The HiPPO Framework
	The Convolutional Representation of LTI SSMs
	Efficiently Modeling Long Sequences with Structured SSMs (S4)
	Mamba: Linear-Time Sequence Modeling with Selective State Spaces
	Using Mamba


	Appendix F. Other Popular ANN Architectures
	Hopfield Networks
	Boltzmann Machines
	Restricted Boltzmann Machines
	Deep Belief Nets
	Self-Organizing Maps


