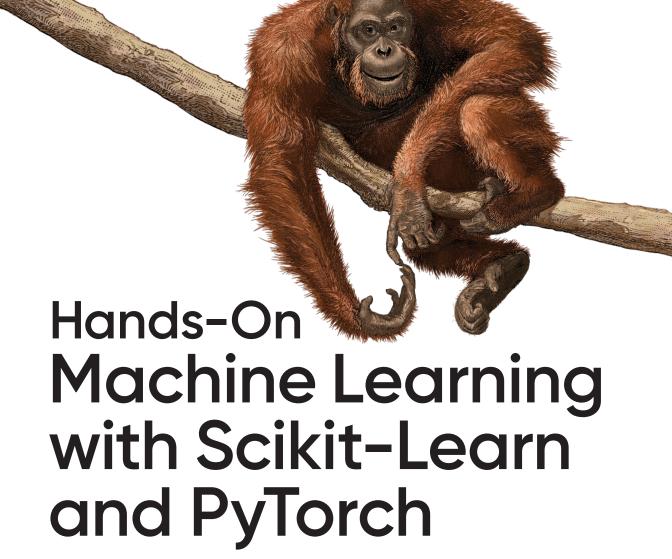
O'REILLY®



Concepts, Tools, and Techniques to Build Intelligent Systems

Online Bonus Content for Hands-On Machine Learning with Scikit-Learn and PyTorch

Aurélien Geron

Hands-On Machine Learning with Scikit-Learn and PyTorch

by Aurélien Geron

Copyright © 2026 Aurélien Geron. All rights reserved.

Published by O'Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa Rosa, CA 95401.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (https://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield
Develeopment Editor: Michele Cronin
Production Editor: Beth Kelly
Copyeditor: Sonia Saruba
Proofreader: Kim Cofer

Indexer: Potomac Indexing LLC Cover Designer: Susan Brown Cover Illustrator: José Marzan Jr. Interior Designer: David Futato Interior Illustrator: Kate Dullea

October 2025: First Edition

Revision History for the First Edition

2025-10-22: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9798341607989 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. *Hands-On Machine Learning with Scikit-Learn and PyTorch*, the cover image, and related trade dress are trademarks of O'Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher's views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

Other Popular ANN Architectures

In this appendix I will give a quick overview of a few historically important neural network architectures that are much less used today than deep Multilayer Perceptrons (Chapter 9), convolutional neural networks (Chapter 12), recurrent neural networks (Chapter 13), transformers (Chapter 15), or autoencoders (Chapter 18). They are often mentioned in the literature, and some are still used in a range of applications, so it is worth knowing about them. Additionally, we will discuss *deep belief nets*, which were the state of the art in Deep Learning until the early 2010s.

Hopfield Networks

Hopfield networks were first introduced by W. A. Little in 1974, then popularized by J. Hopfield in 1982. They are associative memory networks: you first teach them some patterns, and then when they see a new pattern they (hopefully) output the closest learned pattern. This made them useful for character recognition, in particular, before they were outperformed by other approaches: you first train the network by showing it examples of character images (each binary pixel maps to one neuron), and then when you show it a new character image, after a few iterations it outputs the closest learned character.

Hopfield networks are fully connected graphs (see Figure F-1); that is, every neuron is connected to every other neuron. Note that in the diagram the images are 6×6 pixels, so the neural network on the left should contain 36 neurons (and 630 connections), but for visual clarity a much smaller network is represented.

1

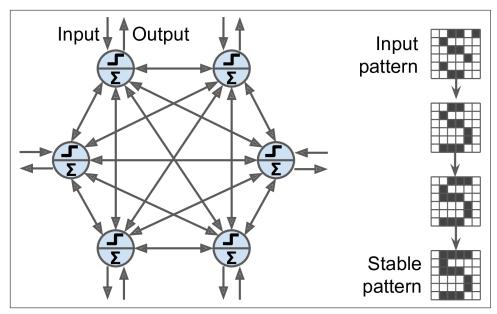


Figure F-1. Hopfield network

The training algorithm works by using Hebb's rule (see the section about the Perceptron in Chapter 9): for each training image, the weight between two neurons is increased if the corresponding pixels are both on or both off, but decreased if one pixel is on and the other is off.

To show a new image to the network, you just activate the neurons that correspond to active pixels. The network then computes the output of every neuron, and this gives you a new image. You can then take this new image and repeat the whole process. After a while, the network reaches a stable state. Generally, this corresponds to the training image that most resembles the input image.

A so-called *energy function* is associated with Hopfield nets. At each iteration, the energy decreases, so the network is guaranteed to eventually stabilize to a low-energy state. The training algorithm tweaks the weights in a way that decreases the energy level of the training patterns, so the network is likely to stabilize in one of these low-energy configurations. Unfortunately, some patterns that were not in the training set also end up with low energy, so the network sometimes stabilizes in a configuration that was not learned. These are called *spurious patterns*.

Another major flaw with Hopfield nets is that they don't scale very well—their memory capacity is roughly equal to 14% of the number of neurons. For example, to classify 28×28 -pixel images, you would need a Hopfield net with 784 fully connected neurons and 306,936 weights. Such a network would only be able to learn

about 110 different characters (14% of 784). That's a lot of parameters for such a small memory.

Boltzmann Machines

Boltzmann machines were invented in 1985 by Geoffrey Hinton and Terrence Sejnowski. Just like Hopfield nets, they are fully connected ANNs, but they are based on stochastic neurons: instead of using a deterministic step function to decide what value to output, these neurons output 1 with some probability, and 0 otherwise. The probability function that these ANNs use is based on the Boltzmann distribution (used in statistical mechanics), hence their name. Equation F-1 gives the probability that a particular neuron will output 1.

Equation F-1. Probability that the ith neuron will output 1

$$p(s_i^{(\text{next step})} = 1) = \sigma\left(\frac{\sum_{j=1}^{N} w_{i,j} s_j + b_i}{T}\right)$$

- s_i is the j^{th} neuron's state (0 or 1).
- $w_{i,i}$ is the connection weight between the i^{th} and j^{th} neurons. Note that $w_{i,i} = 0$.
- b_i is the i^{th} neuron's bias term. We can implement this term by adding a bias neuron to the network.
- *N* is the number of neurons in the network.
- T is a number called the network's temperature; the higher the temperature, the more random the output is (i.e., the more the probability approaches 50%).
- σ is the logistic function.

Neurons in Boltzmann machines are separated into two groups: visible units and hidden units (see Figure F-2). All neurons work in the same stochastic way, but the visible units are the ones that receive the inputs and from which outputs are read.

Because of its stochastic nature, a Boltzmann machine will never stabilize into a fixed configuration; instead, it will keep switching between many configurations. If it is left running for a sufficiently long time, the probability of observing a particular configuration will only be a function of the connection weights and bias terms, not of the original configuration (similarly, after you shuffle a deck of cards for long enough, the configuration of the deck does not depend on the initial state). When the network reaches this state where the original configuration is "forgotten," it is said to be in thermal equilibrium (although its configuration keeps changing all the time). By setting the network parameters appropriately, letting the network reach thermal equilibrium, and then observing its state, we can simulate a wide range of probability distributions. This is called a *generative model*.

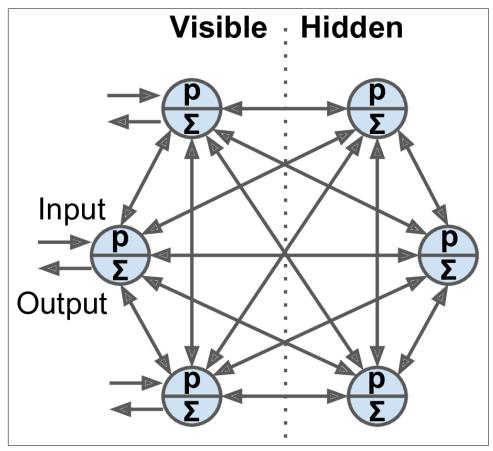


Figure F-2. Boltzmann machine

Training a Boltzmann machine means finding the parameters that will make the network approximate the training set's probability distribution. For example, if there are three visible neurons and the training set contains 75% (0, 1, 1) triplets, 10% (0, 0, 1) triplets, and 15% (1, 1, 1) triplets, then after training a Boltzmann machine, you could use it to generate random binary triplets with about the same probability distribution. For example, about 75% of the time it would output the (0, 1, 1) triplet.

Such a generative model can be used in a variety of ways. For example, if it is trained on images, and you provide an incomplete or noisy image to the network, it will automatically "repair" the image in a reasonable way. You can also use a generative model for classification. Just add a few visible neurons to encode the training image's class (e.g., add 10 visible neurons and turn on only the fifth neuron when the training

image represents a 5). Then, when given a new image, the network will automatically turn on the appropriate visible neurons, indicating the image's class (e.g., it will turn on the fifth visible neuron if the image represents a 5).

Unfortunately, there is no efficient technique to train Boltzmann machines. However, fairly efficient algorithms have been developed to train restricted Boltzmann machines (RBMs).

Restricted Boltzmann Machines

An RBM is simply a Boltzmann machine in which there are no connections between visible units or between hidden units, only between visible and hidden units. For example, Figure F-3 represents an RBM with three visible units and four hidden units.

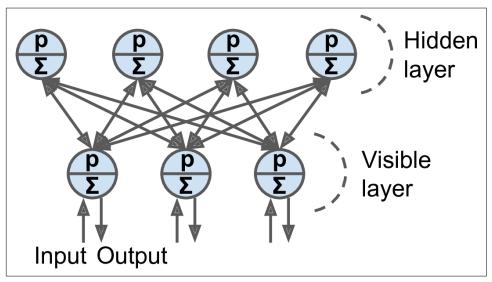


Figure F-3. Restricted Boltzmann machine

A very efficient training algorithm called Contrastive Divergence was introduced in 2005 by Miguel Á. Carreira-Perpiñán and Geoffrey Hinton. Here is how it works: for each training instance \mathbf{x} , the algorithm starts by feeding it to the network by setting the state of the visible units to x_1, x_2, \dots, x_n . Then you compute the state of the hidden units by applying the stochastic equation described before (Equation F-1). This gives you a hidden vector **h** (where h_i is equal to the state of the i^{th} unit). Next you compute the state of the visible units, by applying the same stochastic equation. This gives you

¹ Miguel Á. Carreira-Perpiñán and Geoffrey E. Hinton, "On Contrastive Divergence Learning," Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics (2005): 59-66.

a vector \mathbf{x}' . Then once again you compute the state of the hidden units, which gives you a vector \mathbf{h}' . Now you can update each connection weight by applying the rule in Equation F-2, where η is the learning rate.

Equation F-2. Contrastive divergence weight update

$$w_{i,j} \leftarrow w_{i,j} + \eta (\mathbf{x} \mathbf{h}^{\mathsf{T}} - \mathbf{x}' \mathbf{h}'^{\mathsf{T}})$$

The great benefit of this algorithm is that it does not require waiting for the network to reach thermal equilibrium: it just goes forward, backward, and forward again, and that's it. This makes it incomparably more efficient than previous algorithms, and it was a key ingredient to the first success of Deep Learning based on multiple stacked RBMs.

Deep Belief Nets

Several layers of RBMs can be stacked; the hidden units of the first-level RBM serve as the visible units for the second-layer RBM, and so on. Such an RBM stack is called a deep belief net (DBN).

Yee-Whye Teh, one of Geoffrey Hinton's students, observed that it was possible to train DBNs one layer at a time using Contrastive Divergence, starting with the lower layers and then gradually moving up to the top layers. This led to the groundbreaking article that kickstarted the Deep Learning tsunami in 2006.²

Just like RBMs, DBNs learn to reproduce the probability distribution of their inputs, without any supervision. However, they are much better at it, for the same reason that deep neural networks are more powerful than shallow ones: real-world data is often organized in hierarchical patterns, and DBNs take advantage of that. Their lower layers learn low-level features in the input data, while higher layers learn high-level features.

Just like RBMs, DBNs are fundamentally unsupervised, but you can also train them in a supervised manner by adding some visible units to represent the labels. Moreover, one great feature of DBNs is that they can be trained in a semisupervised fashion. Figure F-4 represents such a DBN configured for semisupervised learning.

² Geoffrey E. Hinton et al., "A Fast Learning Algorithm for Deep Belief Nets," Neural Computation 18 (2006): 1527-1554.

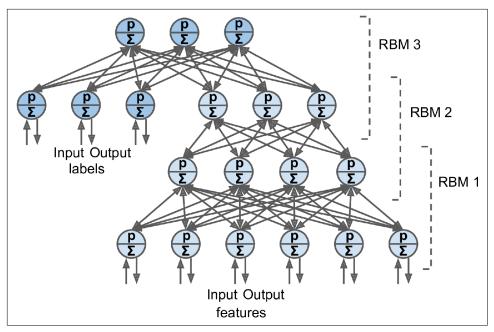


Figure F-4. A deep belief network configured for semisupervised learning

First, RBM 1 is trained without supervision. It learns low-level features in the training data. Then RBM 2 is trained with RBM 1's hidden units as inputs, again without supervision: it learns higher-level features (note that RBM 2's hidden units include only the three rightmost units, not the label units). Several more RBMs could be stacked this way, but you get the idea. So far, training was 100% unsupervised. Lastly, RBM 3 is trained using RBM 2's hidden units as inputs, as well as extra visible units used to represent the target labels (e.g., a one-hot vector representing the instance class). It learns to associate high-level features with training labels. This is the supervised step.

At the end of training, if you feed RBM 1 a new instance, the signal will propagate up to RBM 2, then up to the top of RBM 3, and then back down to the label units; hopefully, the appropriate label will light up. This is how a DBN can be used for classification.

One great benefit of this semisupervised approach is that you don't need much labeled training data. If the unsupervised RBMs do a good enough job, then only a small amount of labeled training instances per class will be necessary. Similarly, a baby learns to recognize objects without supervision, so when you point to a chair and say "chair," the baby can associate the word "chair" with the class of objects it has already learned to recognize on its own. You don't need to point to every single chair

and say "chair"; only a few examples will suffice (just enough so the baby can be sure that you are indeed referring to the chair, not to its color or one of the chair's parts).

Quite amazingly, DBNs can also work in reverse. If you activate one of the label units, the signal will propagate up to the hidden units of RBM 3, then down to RBM 2, and then RBM 1, and a new instance will be output by the visible units of RBM 1. This new instance will usually look like a regular instance of the class whose label unit you activated. This generative capability of DBNs is quite powerful. For example, it has been used to automatically generate captions for images, and vice versa: first a DBN is trained (without supervision) to learn features in images, and another DBN is trained (again without supervision) to learn features in sets of captions (e.g., "car" often comes with "automobile"). Then an RBM is stacked on top of both DBNs and trained with a set of images along with their captions; it learns to associate high-level features in images with high-level features in captions. Next, if you feed the image DBN an image of a car, the signal will propagate through the network, up to the top-level RBM, and back down to the bottom of the caption DBN, producing a caption. Due to the stochastic nature of RBMs and DBNs, the caption will keep changing randomly, but it will generally be appropriate for the image. If you generate a few hundred captions, the most frequently generated ones will likely be a good description of the image.3

Self-Organizing Maps

Self-organizing maps (SOMs) are quite different from all the other types of neural networks we have discussed so far. They are used to produce a low-dimensional representation of a high-dimensional dataset, generally for visualization, clustering, or classification. The neurons are spread across a map (typically 2D for visualization, but it can be any number of dimensions you want), as shown in Figure F-5, and each neuron has a weighted connection to every input (note that the diagram shows just two inputs, but there are typically a very large number, since the whole point of SOMs is to reduce dimensionality).

³ See this video by Geoffrey Hinton for more details and a demo: https://homl.info/137.

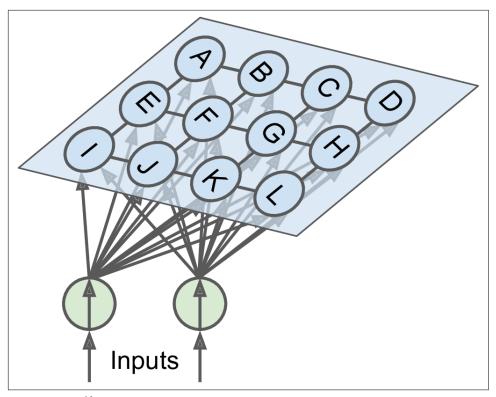


Figure F-5. Self-organizing map

Once the network is trained, you can feed it a new instance and this will activate only one neuron (i.e., one point on the map): the neuron whose weight vector is closest to the input vector. In general, instances that are nearby in the original input space will activate neurons that are nearby on the map. This makes SOMs useful not only for visualization (in particular, you can easily identify clusters on the map), but also for applications like speech recognition. For example, if each instance represents an audio recording of a person pronouncing a vowel, then different pronunciations of the vowel "a" will activate neurons in the same area of the map, while instances of the vowel "e" will activate neurons in another area, and intermediate sounds will generally activate intermediate neurons on the map.

One important difference from the other dimensionality reduction techniques discussed in Chapter 7 is that all instances get mapped to a discrete number of points in the low-dimensional space (one point per neuron). When there are very few neurons, this technique is better described as clustering rather than dimensionality reduction.

The training algorithm is unsupervised. It works by having all the neurons compete against each other. First, all the weights are initialized randomly. Then a training instance is picked randomly and fed to the network. All neurons compute the distance between their weight vector and the input vector (this is very different from the artificial neurons we have seen so far). The neuron that measures the smallest distance wins and tweaks its weight vector to be slightly closer to the input vector, making it more likely to win future competitions for other inputs similar to this one. It also recruits its neighboring neurons, and they too update their weight vectors to be slightly closer to the input vector (but they don't update their weights as much as the winning neuron). Then the algorithm picks another training instance and repeats the process, again and again. This algorithm tends to make nearby neurons gradually specialize in similar inputs.⁴

⁴ You can imagine a class of young children with roughly similar skills. One child happens to be slightly better at basketball. This motivates them to practice more, especially with their friends. After a while, this group of friends gets so good at basketball that other kids cannot compete. But that's okay, because the other kids specialize in other areas. After a while, the class is full of little specialized groups.