O'REILLY"

Hands-On Wk €
Machine Learnlng
with Scikit-Learn
and PyTlorch

Concepts, Tools, and Techniques
to Build Intelligent Systems

Aurélien Géron

Online Bonus Content for
Hands-On Machine Learning
with Scikit-Learn and PyTorch

Aurélien Geron

O'REILLY"

Hands-On Machine Learning with Scikit-Learn and PyTorch
by Aurélien Geron

Copyright © 2026 Aurélien Geron. All rights reserved.
Published by O’Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa Rosa, CA 95401.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (https://oreilly.com). For more information, contact our corporate/institu-
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield Indexer: Potomac Indexing LLC
Develeopment Editor: Michele Cronin Cover Designer: Susan Brown
Production Editor: Beth Kelly Cover lllustrator: José Marzan Jr.
Copyeditor: Sonia Saruba Interior Designer: David Futato
Proofreader: Kim Cofer Interior lllustrator: Kate Dullea
October 2025: First Edition

Revision History for the First Edition
2025-10-22: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9798341607989 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. Hands-On Machine Learning with
Scikit-Learn and PyTorch, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

979-8-341-60798-9
[LSI]

https://oreilly.com
mailto:corporate@oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9798341607989

APPENDIX E
State-Space Models (SSMs)

State-space models (SSMs) were proposed in 1960 by Rudolf E. Kalman,' but they
have only recently become popular in deep learning. This led to several SSM-based
neural network architectures that rival Transformers in both speed and quality, espe-
cially for very long input sequences: at inference time, these models scale linearly
with the input sequence length, not quadratically like transformers, yet they manage
to detect long-distance patterns over the inputs.

SSM-based neural networks are generally just called SSMs, but keep in mind that the
actual SSM (in the traditional sense) is just one component of the neural network: as
we will see, it serves as a memory storage and can replace attention layers (although
some hybrid models combine both SSMs and attention layers).

In this appendix, we will discuss the following topics:

Traditional SSMs (1960s)

Traditional SSMs are at the core of all modern SSM-based neural networks. An
SSM models a dynamical system whose state evolves over time as a function of
past states and inputs. A continuous-time SSM deals with continuous inputs (e.g.,
soundwaves), and its a purely mathematical tool. However, it can be converted
into a discrete-time SSM (e.g., processing discrete sound samples) with similar
dynamics: in this form, the SSM is just a recurrent neural network (RNN, intro-
duced in Chapter 13 of the book).? SSM-based neural nets use linear discrete
SSMs, where the state evolves as a linear function of the previous state and cur-
rent inputs.

1 Rudolf E. Kalman, “A New Approach to Linear Filtering and Prediction Problems”, Transactions of the ASME
- Journal of Basic Engineering, 82(Series D): 35-45 (1960).

2 If you don’t have the book, you can get it at https://homl.info/.

https://homl.info/
https://homl.info/ssm1960

Viewing functions as vectors

To truly understand the next three topics, we will need to take a little mathemati-
cal detour through function space. We will see that functions can be viewed as
vectors: you can add them, scale them, use the inner product—a generalization of
the dot product—to measure a function’s norm (i.e., its length), check whether
two functions are orthogonal, and project a function onto another function. This
will allow us to describe any continuous function as a weighted sum of basis
functions, just like a 3D vector can be described as a weighted sum of basis vec-
tors, for example v = 3x - 2y + 5z. The weights in this sum define the coordinates
of vector u: (3, -2, 5). Similarly, a function’s coordinates in function space are the
weights of each basis function in the weighted sum. Why does this matter? Well,
in the modern SSMs we will discuss, the state vector contains the coordinates in
function space of an approximation of the input function (or a part of it).

The Legendre Memory Unit (2019)

The Legendre Memory Unit (LMU) is an SSM-based neural network whose
SSMs are designed to have an excellent memory of the last w inputs (where w is
the window size). The parameters of the SSM are not trained: they are entirely
derived mathematically and remain constant. The LMU SSMs constantly update
a state vector of fixed size d,., ensuring that it can be used to reconstruct an
approximation of the last w inputs.

The HiPPO framework (2020)

HiPPO is a theoretical framework that generalizes the ideas from the LMU,
allowing for more flexibility, such as giving more weight to recent inputs, or
applying uniform weights to all past inputs, not just a sliding window like the
LMU.

Convolutional Representation of LTI SSMs (1960s)

An LTI SSM can be converted from its usual RNN representation to a convolu-
tional representation (convolutional neural networks—CNNs—were introduced
in Chapter 12). In this convolutional form, the SSM can be parallelized along the
sequence length (great during training) and it only requires O(L-log(L)) compu-
tations, as opposed to O(L?) for transformers (where L is the sequence length). At
inference time, the RNN representation can be used: it scales with O(L) as
opposed to O(L?) for transformers.

The S4 model (2021)

S4 was the first SSM-based neural network to outperform transformers on tasks
involving long-range dependencies. It is based on the HiPPO framework and
uses advanced mathematical tricks—including the convolutional representation
—to make the SSM both trainable and extremely efficient.

2

Appendix E: State-Space Models (SSMs)

The Mamba model (2023)

The Mamba model is an even more powerful SSM-based neural network, which
gives the SSM the ability to selectively remember some inputs and forget others
(whereas the previous SSM-based models treated all inputs equally). This change
makes most of the mathematical tricks in the LMU, HiPPO, and S4 unusable, so
you can choose to skip the LMU, HiPPO, and S4 sections if you only want to
learn about Mamba. The SSMs in Mamba are linear RNNs whose weights are
input-dependent. Since they are linear, it’s possible to use a parallelized algorithm
that can run them in O(log(L)) time during training (performing O(L-log(L))
computations in parallel). Mamba also proposed an I/O-aware implementation
which reduces memory transfers within the GPU (like FastAttention does, as we
saw in Chapter 17),? allowing Mamba to run slightly faster than S4.

Apart from the Mamba section, this is a math-heavy appendix.
Don’t worry, it’s not as difficult as it seems. I will do my best to keep
things as simple as I possibly can, and it will give you a much
deeper understanding of SSMs.

Let’s get started! First, we will dive into traditional SSMs.

Traditional SSMs

A traditional SSM describes a dynamical system using state variables, and models its
evolution over time, based on its past states and inputs. For example, an SSM may
describe how a car’s state (e.g., its speed) evolves over time given both its current state
and some inputs (e.g, sensor readings from the wheels, accelerator, and brakes). The
SSM’s output is also based on the state and the inputs (e.g., the output could be the
throttle command for the cruise control system). SSMs are an important part of con-
trol theory, a field that develops models and algorithms to regulate dynamical sys-
tems.

The most common SSM is the linear time-invariant (LTI) SSM, defined by Equation
E-1:
Equation E-1. Linear time-invariant SSM

W(f) = Ah(t) + Bu(?)
y(£) = Ch(t) + Du(t)

3 Chapter 17 is available online for free at https://homlLinfo/.

State-Space Models (SSMs) | 3

https://homl.info/

h(?) is the system’s state vector at time ¢ (e.g., speed at time ¢). Its dimensionality
isd
h'(t) is the derivative of the state vector with respect to time (e.g., acceleration at
time ¢). Its dimensionality is also d

state*

state*

u(t) is the input vector at time ¢ (e.g., wheel, accelerator, and brake sensor inputs
at time). Its dimensionality is d,,,, which may be different from d

nput state*
y(2) is the output vector at time ¢ (e.g., the throttle command for the cruise con-
trol system). Its dimensionality is d,,,, which may be different from d,,,. and

d

input*

state

The matrices A, B, C, D are the model parameters; they don't change over time.
A models how the current state evolves over time. B models how the inputs affect
the state. C models how the output is derived from the state. Lastly, D models
how the inputs directly influence the output (this term is often set to zero).

X Ayarer Agate X Aippup 4

state> “*state input>

x d

state>

The shapes of A, B, C, D are respectively d,.
and d X d;

output input*

output

The first equation relates the function h(t) with its derivative h’(¢),
which makes it a Differential Equation (DE). More precisely, since
there’s a single independent variable ¢, it is an Ordinary Differential
Equation (ODE).

As you can see, this model only contains linear terms, and since the matrices are con-
stant, the system’s behavior is time-invariant (hence the name).

Now there’s a problem: computers can only process discrete data, not continuous
inputs, so how can we actually implement a continuous-time LTI SSM? Well, we can't.
It's a purely mathematical tool: we can design a continuous-time LTI SSM mathemati-
cally, but when we want to run it, we must first convert it to a discrete-time LTI SSM
(see Equation E-2 and Figure E-1). As a bonus, this also opens the door to discrete
data, such as text tokens.

Equation E-2. Discrete LTI SSM
hk = th—l +§uk
Yi = ahk + Buk

4

Appendix E: State-Space Models (SSMs)

Figure E-1. Discrete-time LTI SSM*

This is just like the continuous-time LTT SSM, but time is indexed using steps of size
A, so t = kA, and we are using a different set of matrices A, B, C, D. There are various
ways to convert a continuous-time LTT SSM to a discrete-time LTI SSM with approxi-
mately the same dynamics—and vice versa. In particular, if we make the simplifying
assumption that the continuous inputs are constant between discrete time steps,
which is called Zero-Order Hold (ZOH, see Figure E-2), then it’s possible to derive the
equations in Table E-1.

Table E-1. Converting between a continuous-time LTI SSM and a discrete-time LTI SSM
using Zero-Order Hold

A = exp(4A) = Noa®

p A = Slog(A)
B=A""(expldn) — B B=A"'(A—1B
(=C (=C
D=D D=D

4 This is the modern RNN-like formulation used in SSM-based neural networks. In the traditional SSM formu-
lation, the state vector is shifted by one time-step in the first equation: h; , | = Ab; + Bu,. This makes no

difference to the system’s dynamics (it just shifts the state vector’s index by one time step), but it does affect the
SSM’s output slightly if matrix D is non-zero.

State-Space Models (SSMs) | 5

A is the inverse of matrix A, which you can compute using
torch.linalg.inv(A). This assumes that A is invertible (otherwise you have to
solve an integral).

I is the identity matrix , which can be created using torch.eye(A.size(0))

exp(A) is the matrix exponential of A (not the item-wise exponential). You can
compute it using torch.matrix_exp(A). The definition of exp(x) for real num-
bers is exp(x) = 1 + x + x*/2! + x*/3! + ..., where n! is the factorial of n. This
definition can be extended to matrices: the matrix exponential of matrix A is
defined as exp(A) = I + A + A%/2! + A’%/3! + ..., where the powers of A are the
result of repeated matrix multiplications; A*> = AA, A’> = AAA, and so on (they
are not item-wise powers). These powers can be computed using
torch.matrix_power (A, power).

log(A) is the matrix logarithm (again, not the item-wise logarithm): it's the
inverse of the matrix exponential.” PyTorch does not implement this operation
yet.S For now, you can use scipy.linalg.logm(A_discrete).

A 1

t

Figure E-2. Zero-Order Hold (ZOH) assumes that the input remains constant between
time intervals

Here’s a PyTorch implementation of ZOH (see the notebook at https://homl.info/
colab-p for the discrete-to-continuous implementation):

import

def zoh(A, B, dt):
d_state = A.size(-1)
A_discrete = torch.matrix_exp(A * dt)
Y = (A_discrete - torch.eye(d_state, device=A.device)) @ B

5 The matrix logarithm is not unique: several matrices can exponentiate to the same A. Libraries will typically
compute the principal matrix logarithm, which uniquely selects the version whose eigenvalues have imaginary
parts in the range (-, i].

6 See https://github.com/pytorch/pytorch/issues/9983.

6

Appendix E: State-Space Models (SSMs)

https://github.com/pytorch/pytorch/issues/9983
https://homl.info/colab-p
https://homl.info/colab-p

B_discrete = torch.linalg.solve(A, Y) # == torch.linalg.inv(A) @ Y

return A_discrete, B_discrete
Euler’s method, a simple numerical ODE solver, is another common method to dis-
cretize an SSM: it approximates the rate of change of the state variables as constant
over each time interval: (h,,, - h,) / A = h/(kA), which leads to h,,, = I + AA)h, +
ABu,. So A =1 + AA and B = AB. This is a much simpler discretization equation, but
the result is not as precise, especially for systems with fast dynamics or for large time
steps.

You may have noticed that a discrete LTI SSM looks very much like a recurrent neural
network (RNN; introduced in Chapter 13): each new state is computed based on the
previous state and the inputs at the current time step, and the outputs are computed
based on the current state and the inputs. The term Dx, ensures that the inputs can
directly influence the outputs; you can think of it as a flexible skip connection (not all
SSMs include this term). So, yes indeed, a discrete-time LTI SSM is just a linear RNN!
Here’s a very basic PyTorch implementation, to make things more concrete:

import as

class BasicSSM(nn.Module):
def __init__(self, d_input, d_state, d_output):

super().__init__()
self.d_state = d_state
self.A = nn.Parameter(torch.randn(d_state, d_state))
self.B = nn.Parameter(torch.randn(d_state, d_input))
self.C = nn.Parameter(torch.randn(d_output, d_state))
self.D = nn.Parameter(torch.randn(d_output, d_input))

def forward(self, u):

batch_size, seq_len, _ = u.shape
h = torch.zeros(batch_size, self.d_state, device=u.device)
outputs = []

for 1 in range(seg_len):
u_t =uf:, i1, :] # iterate over each element in the sequence
h=h@self.A.T + u_t @ self.B.T
y = h @ self.C.T + u_t @ self.D.T
outputs.append(y)

return torch.stack(outputs, dim=1)

This implementation is very basic: modern SSMs are much more
efficient. Moreover, they often use non-trainable or partially
trained matrices, derived mathematically to optimize the SSM’s
memory, as we will see. In Mamba, the matrices B, C, and D also
depend on the inputs.

State-Space Models (SSMs) | 7

Now, before we explore modern SSMs, we must first learn to think of functions as
vectors. As I mentioned in the introduction of this appendix, the state vector of
modern SSMs contains the coordinates of the input function in function space (or
rather the coordinates of an approximated and possibly truncated version of the input
function). Let’s see what all of this means.

Viewing Functions as Vectors’

Just like you can add two Euclidean vectors, you can also add two functions together:
(f +) (x) = flix) + g(x). Just like you can scale a vector, you can also scale a function:
(af)(x) = a+f(x). It turns out that these addition and scaling operations have all the
properties required to define a vector space, such as associativity (f+ (g+ h) = (f+ g) +
h) and commutativity (f + g = g + f).® In other words, functions can be viewed as vec-
tors; they're just not the kind we are used to.

With Euclidean vectors, a very useful operation is the dot product. For example,
when the dot product of two vectors is zero, we know that these vectors are orthogo-
nal. And the length (or norm) of a vector u, denoted ||ul|, is equal to the square root
of u - u. Similarly, two functions fand g are defined as orthogonal if their inner prod-
uct, denoted (f, g), is equal to zero. Also, the norm of a function f is defined as the
square root of (f; f).

As you can see, the inner product is a generalization of the dot product to other vec-
tor spaces, such as function spaces. There are a few variants you can choose from,
depending on the vector space, but the most common inner product for real-valued
functions is defined in Equation E-3.

Equation E-3. Standard inner product for a function space

b
(f.g) =L w(x) f(x) g(x) dx

In this equation:

o (f, g is the inner product of functions fand g.

« aand b are the bounds we are considering for the inner product, for example a =
0 and b = 1 for the LMU, or a = 0 and b = +o for some HiPPO-based SSMs such
as HiPPO-Leg§, as we will see.

7 Many thanks to Ulf Bissbort who reviewed this appendix and wrote this excellent post, which inspired much
of this section.

8 The full list of properties required are listed at https://homl.info/vectors.

8 | Appendix E: State-Space Models (SSMs)

https://homl.info/functionspace
https://homl.info/vectors

o w(x) is a weight function. In the LMU, it is defined as w(x) = 1 for all x: this gives
equal weight to every point in the interval [0, 1]. In SSMs based on HiPPO-LegS,
we will use w(x) = exp(-x), giving more weight to the most recent input signal.

« The integral of some function f over a range [a, b] is denoted fl; f(x)dx.

If you are not familiar with integrals, you can think of IZ f(x)dx as
the area under the curve defined by y = f(x) between x = a and x =

2 2
b. For example, f1_04x dx = % - 47 = 42. To understand this result,
try drawing the line y = x and evaluate the area between the line
and the horizontal axis: any area below the horizontal axis must be

subtracted rather than added.

So functions are vectors: we can add them and scale them, compute their inner prod-
ucts, measure their norm, and check whether two functions defined over some inter-
val are orthogonal or not. Great, but how does this help? Well, just like we can define
a set of basis vectors for a Euclidean space and use these basis vectors to define the
coordinates of any vector in this space, we can also define a set of basis functions and
use this set to define the coordinates of every function in the function space. If the
basis functions are orthonormal, meaning orthogonal and of unit length, then you
can find the coordinates of a function fby computing the inner product of f with each
basis function.

For example, consider the space of polynomial functions, and the set of basis func-
tions py, Py P ---» such that p(x) = x' (these functions are called monomials). The
polynomial q(x) = 2 - 3x + 7x* can be described as a weighted sum of the basis func-
tions: g = 2p, — 3p; + 0p, + 7p;5 + Op, + Op; + ..., so the coordinates of g in this basis
are (2,-3,0,7,0,0, ...). In practice, we cannot store an infinite number of coordi-
nates, so we must truncate the coordinates at some chosen length d. Luckily, any con-
tinuous function can be approximated arbitrarily well over a bounded interval (e.g.,
[0, 1]) using a polynomial of sufficient degree—this is the Weierstrass approximation
theorem—so if we choose a sufficiently large d, we can use d coordinates to approxi-
mate any continuous function over a bounded interval.

However, the monomials are not a good choice of basis functions. Indeed, although
they are linearly independent—a fundamental requirement for any set of basis func-
tions—they are not orthogonal over any bounded interval (the inner product is non-
zero for any two distinct monomials). As a result, computations in this basis are
numerically unstable: the coordinates are highly correlated, rounding errors are
amplified, and truncating the expansion (i.e., dropping the last coordinates) can
severely distort the approximation. What we need is a set of orthogonal basis func-
tions.

State-Space Models (SSMs) | 9

Luckily, many such sets have been discovered, such as the Legendre polynomials. This
is a sequence of polynomials of increasing degrees (the i polynomial has degree 1)
which are all orthogonal to each other over the range [-1, 1]. As we will see, the
LMU’s SSMs actually use shifted Legendre polynomials (see Equation E-4) which are
orthogonal over the range [0, 1] instead of [-1, 1]. The first 5 shifted Legendre poly-
nomials are represented in Figure E-3.

Equation E-4. Shifted Legendre polynomials.

=03 ()
n!

where(Z) :W

Po(x)
0.75 1

0.50 -

0.25 -
Pk(x)o.oo .
-0.25 4
~0.50 4
P2 (x) P3(x) | Palx)
-0.75 4

—1.00 4
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure E-3. The first five shifted Legendre polynomials ; to ;

You can use the following function to compute the i shifted Legendre polynomial;
the parameter x is a vector containing the points at which you wish to evaluate the
polynomial:

from scipy.special import binom

def shifted_legendre_polynomial(i, x):

coeffs - [(-1)**3 * binom(i, j) * binom(i + j, 1) for j in range(i + 1)]
coeffs = (-1)**{ * torch.tensor(coeffs, dtype=x.dtype)
powers = x.unsqueeze(-1) ** torch.arange(i + 1, device=x.device)

return (coeffs * powers).sum(dim=-1)

Any continuous function defined over the range [0, 1] can be approximated by using
a weighted sum of the first d shifted Legendre polynomials: the larger d is, the more

10 | Appendix E: State-Space Models (SSMs)

precise the approximation (but the greater the memory and computational cost).
Figure E-4 shows a function f(x) and several approximations computed using a
weighted sum of shifted Legendre polynomials. From yellow to red, the approxima-
tions use more and more polynomials in their weighted sum, from just one (%, so
the approximation is just a constant function) to nine (& to %, so its a degree 8
polynomial), skipping a few for readability. You can see how the approximations
improve as we add more polynomials to the mix.

3 .
f(x) hoPo(x) +|-+- + hgPs(x)
24\~
*~_hoPo(x) + -+ + h3P3(x)
1 A \\\
f(x))
0' \\\\ = /”
L hoPol) - 4 haPa(X) TN N oo y
_2 .
0.0 0?2 0?4 0?6 0?8 1.0
X

Figure E-4. A function f(x) and its approximations using more and more shifted Legen-
dre polynomials; the term h, is the weight of the i" polynomial.

Now suppose you have a function u defined on the interval [0, 1], and a d-
dimensional vector h containing the first d coordinates of u in the basis of shifted
Legendre polynomials: you can reconstruct an approximation of u using Equation
E-5.

Equation E-5. Approximating a continuous function over interval [0, 1] using shifted
Legendre polynomials

d-1
u(x) = 'Zo h; 2 (x)

i=

In this equation, , is the i coordinate of function u in the basis (i.e., the i element
of vector h), and Zis the i shifted Legendre polynomial.

The following code can be used to compute this approximation. The weight vector h
contains the weights of the first d shifted Legendre polynomials, and the vector x con-
tains the points at which you wish to evaluate the approximation (between 0 and 1).

State-Space Models (SSMs) | 11

def reconstructed_function(h, x):

Pis = [shifted_legendre_polynomial(i, x) for i1 in range(h.size(0))]

return (h.unsqueeze(-1) * torch.stack(Pis)).sum(dim=0)
Now you know how to go from h to an approximation of u, but how can you go in
the other direction—that is, how can you find h given a function u? Because the shif-
ted Legendre polynomials are all orthogonal to each other, each coordinate #; of u in
this basis can be obtained by projecting u onto the corresponding basis function. This
is done using Equation E-6 (note that we have to divide (u, %) by (%, -#’) because
the shifted Legendre polynomials are not normalized—they don’t have unit norm).

Equation E-6. Finding the i" coordinate h; of a continuous function u defined over
[0, 1], in the basis of shifted Legendre polynomials.

b= <U;go,'> _<U,3]’i>_(2,+1)’[1 ()W()d
i= <,@i,,?i> = 1 = 1 b Uux) - I-x X
2i+1

Unfortunately, this integral is generally impossible to solve analytically since the func-
tion u is typically based on the SSM’s inputs, which could be anything at all. Luckily,
we don’t need to compute h directly; we only need to compute the matrices A and B
of the continuous-time LTT SSM, so that h can be updated properly at each instant. In
other words, we need to find A and B such that h'(f) = Ah(f) + Bu(t). This requires
quite a bit of mathematical ingenuity, and it doesn’t always work; in fact, it has only
been achieved for a few well-behaved cases, such as with shifted Legendre polyno-
mials over the interval [0, 1] using the standard inner product with w(t) = 1 (as in the
LMU).

Congratulations on making it through this math section! You now have the main
tools you need to understand modern SSMs. Let’s start with the LMU.

Legendre Memory Unit (LMU)

Many researchers have attempted to combine traditional SSMs and deep learning for
over a decade, particularly in the area of time series forecasting and neuroscience. A
breakthrough occurred in 2019 with the Legendre Memory Unit (LMU): this is a pow-
erful SSM-based RNN architecture proposed in 2019° by Aaron Voelker et al. from
the Centre for Theoretical Neuroscience and Applied Brain Research Inc. in Canada.
It demonstrated impressive performance on very long sequences.

An LMU’s memory is split into a short-term memory s and a long-term memory H
(see Figure E-5), much like an LSTM cell (see Chapter 13), except H is a matrix, not a

9 Aaron Voelker et al., “Legendre memory units: Continuous-time representation in recurrent neural net-
works?, Advances in neural information processing systems 32 (2019).

12 | Appendix E: State-Space Models (SSMs)

https://homl.info/lmu

vector. At time step k, the LMU’s input vector x,, the flattened matrix H,_,, and the
vector s, are passed through a linear layer each, and the three results as summed.
The sum is a vector u;, which is fed to the LMU’s SSM module (we will see exactly
how it works in a minute). The SSM module has two outputs: a vector y,, and the
updated long-term memory matrix H,. The vectors y,, X;, and s,_; are then passed
through a linear layer each, and the three results are summed. Lastly, the sum is
passed through an activation function (e.g., tanh). The final result is the updated
short-term memory vector s,. This vector s, also serves as the LMU’s output.

(Linear| (Linear| |[Linear|

Figure E-5. Legendre Memory Unit (LMU)

I have just represented a single LMU, but you would generally stack
multiple LMUs.

Now let’s zoom in on the SSMs (see Figure E-6). The LMU actually uses one SSM per
input dimension i in u, (which I will call channel i). Each SSM has its own state vec-
tor h, which corresponds to the i row of the long-term memory matrix H. Each
SSM processes a single channel of the vector u,, ignoring all other channels. In other

State-Space Models (SSMs) | 13

words, at time step k, the i SSM processes a scalar input 1, and updates its state
vector from h?”,_, to h?, using Equation E-2. Each SSM outputs its state vector
(implicitly, C is the identity matrix and D is zero). The LMU’s output vector y; is
obtained by concatenating all the SSM state vectors h, to h¥,, where d, (short for
;) is the dimensionality of u, (i.e., its number of channels, which is also the num-
ber of SSMs).

d, LTI SSMs

(one per input channel)

Figure E-6. Each input channel is processed by its own SSM, with its own state vector

Although LTI SSMs are capable of handling multidimensional
inputs, the specific LTT SSMs used in modern SSM-based neural
networks are designed to process only 1D inputs at each time step,
which is why we need one SSM per input channel.

To make this more concrete, here are a few lines of PyTorch code that show how you
can simultaneously update all the state vectors across all SSMs and all instances in the
batch (d_input corresponds to d, in Figure E-6):

batch_size, d_state, d_input = 64, 128, 32

torch.randn(1, 1, d_state, d_state) # state-to-state matrix, shared by SSMs
torch.randn(1, 1, d_state, 1) # input-to-state vector, shared by SSMs
torch.randn(batch_size, d_input, d_state, 1) # state vector per inst. & SSM
torch.randn(batch_size, d_input, 1, 1) # input scalar per instance & SSM

cC T w>»
In

14 | Appendix E: State-Space Models (SSMs)

H
y

A@H+ B @u # update states of all SSMs across all instances, in parallel
H.view(batch_size, d_input * d_state) # concat. outputs for all instances

In the rest of this discussion, I will focus on a single SSM at a time, so the input u; will
always be a scalar, but always keep in mind that there are actually multiple SSMs
working in parallel, each focusing only on a single input channel.

Since there’s a single SSM per input channel and they all work sepa-
rately, the SSMs cannot capture any pattern across the input chan-
nels. Luckily, the neural network layers around the SSMs can take
care of combining channels.

Each SSM in the LMU is not just any random SSM: it’s a structured SSM. What is a
structured SSM, you ask? It’s an SSM whose matrices have special algebraic properties
designed to give the SSM desirable features, such as speed, or stability. In the case of
the LMU’s SSM, the matrices A and B are designed to give the SSM an excellent
memory.

You may be wondering how the LMU authors found these ideal matrices A and B?
Interestingly, they first designed a continuous-time SSM with the desired property
(i.e., an excellent memory), then converted it to a discrete-time SSM at the very end
using ZOH.

Specifically, they mathematically derived two matrices A and B for a continuous-time
SSM, such that its state vector h(t) would always keep track of the coordinates in
function space of an approximation of the sliding input window v, (x) = u(t — xw),
where 0 < x < 1, w is the width of the window, and u(#) is the input signal at time ¢.
Note that v, ,(x) is a function defined over the interval [0, 1]; v,,,(0) is the input signal
at time #, while v,,(1) is the input signal at time t — w. As I mentioned earlier, the
coordinates are in the basis of shifted Legendre polynomials, using the standard inner
product with w(f) = 1.

These matrices are shown in Equation E-7. For more details on the mathematical der-
ivation, please see Aaron Voelker’s 2019 PhD thesis (note that a simpler approach was
proposed later by the HiPPO authors).

Equation E-7. Matrices A and B for a continuous-time LTI SSM with Legendre
memory

- i<j

A=la)erR™ g -@ivn) 7

J] (-1 It ix

B=[b] e R™, b =Qi+1)(-1), ijefod-1]

State-Space Models (SSMs) | 15

https://homl.info/pade

The fact that the shifted Legendre polynomials are one-
dimensional functions is the reason why LMU SSMs operate on
one-dimensional inputs. In principle, mathematical tools such as
multivariate Legendre expansions could extend this approach to
multidimensional inputs, but the number of coefficients (and thus
the state size) would grow exponentially with the number of input
channels, making such an approach computationally intractable.

And that’s it! After converting this continuous-time SSM to a discrete-time SSM
using ZOH (Table E-1), you get an SSM with an excellent memory over the sliding
input window. While a transformer’s multi-head attention (MHA) layer considers all
past inputs at each time step, the LMU only needs to look at the previous state and
the current input. Therefore, if L is the length of the input sequence, the LMU has a
computational complexity of O(L), as opposed to O(L?) for the transformer. The
LMU only remembers a sliding window, not the full input history, but it’s possible to
make the sliding window quite wide and still get good accuracy.

In conclusion, the LMU showed that a structured SSM could outperform top-tier
models on tasks requiring long memory. It also showed that relying on continuous-
time representations was a viable alternative to the traditional gating mechanisms
used in LSTMs. But this was just the beginning. Next up: HiPPO.

The HiPPO Framework

In August 2020, Albert Gu, Tri Dao, and other researchers from Stanford University
and the University at Buffalo, generalized the ideas of LMU into the High-order Poly-
nomial Projection Operator (HiPPO) framework.” This is not a model, but a formal
theory for continuously tracking and reconstructing signals using polynomial projec-
tions. HiPPO was later used to build actual models, as we will see shortly.

HiPPO reframes memory as a problem of online function approximation: given a
function u(t) over time, the goal is to gradually update a compressed representation h
of the full history (denoted u.,). At any time ¢, the representation h(f) can be used to
approximately reconstruct u.,. Just like in the LMU, the state vector h contains the
weights of orthogonal polynomials, and the ideal transition matrices A and B are
derived mathematically. However, HiPPO is more flexible; for example, it allows for
other sets of orthogonal polynomials, such as Laguerre polynomials—which are
orthogonal over the interval [0 to +o0)—leading to different pairs of matrices A and
B.

10 Albert Gu, Tri Dao, et al., “HiPPO: Recurrent Memory with Optimal Polynomial Projections”, arXiv preprint
arXiv:2008.07669 (2020).

16 | Appendix E: State-Space Models (SSMs)

https://homl.info/hippo
https://homl.info/hippo

HiPPO only considers single-input single-output (SISO) SSMs,
meaning that the inputs and outputs at each time step are just
scalars. In contrast, the LMU used single-input multiple-output
SSMs, as we saw in Figure E-6. HiPPO-based neural nets contain
one SSM per input channel (just like the LMU), and their scalar
outputs are concatenated to form the output vector (with the same
dimensionality as the inputs). For the rest of this discussion, we
will focus on a single HiPPO SSM, with a scalar input u(t), and a
scalar output y(f).

Importantly, HiPPO also proposes to evaluate how good an approximation is based
on a measure of the importance of each point in time. This measure can give more
weight to the recent past, while still paying attention to the distant past. The LMU
implicitly uses a uniform measure w(f) = 1 over the sliding input window, while
ignoring the past beyond the window. In contrast, HiPPO provides more flexibility: it
can theoretically capture dependencies across arbitrarily long sequences.

For example, Figure E-7 shows a function u(t), represented with a thin gray line, and
the approximate history that a HiPPO-based model can reconstruct at times ¢, (in
blue) and ¢, (in red). In this example, we use an exponentially decaying measure (rep-
resented at the bottom of the figure for both time steps): this gives more importance
to the recent past but still considers the full history. This also explains why the
approximations are more accurate for the recent past. As you can see, the reconstruc-
ted history keeps changing over time. Also note that the importance of a particular
point in time changes over time, typically decreasing.

Measure

Measure
t t

1 2

>t

Figure E-7. Approximate history of u(t) at times t, and t,, using an exponentially decay-
ing measure

Just like the LMU authors, the HiPPO authors derived A and B mathematically
(using a simpler approach than for the LMU), and they did so for a few well-behaved
cases (see Figure E-8):

State-Space Models (SSMs) | 17

o HiPPO-LegS (Scaled Legendre): applies a uniform weight to the full history.

o HiPPO-LegT (Translated Legendre): assigns a uniform weight over the most
recent history; it’s a fixed-sized sliding window. This is equivalent to LMU.

o HiPPO-LagT (Translated Laguerre): uses an exponentially decaying measure over
the full history.

A HIiPPO-LegS HIiPPO-LegT HIiPPO-LagT

u(t)

I> ¢ >t >t

Figure E-8. Three HiPPO instances derived for different measures

The continuous and discrete time dynamics for HiPPO-LegS are shown in Equation
E-8. Since the shifted Legendre polynomials are orthogonal over the range 0 to 1, the
time needs to be normalized to this range, which is why we divide A and B by ¢. This
means that we no longer have an LTI SSM, but instead we have a linear time-variant
(LTV) SSM. This makes it hard to use ZOH to convert the SSM to discrete time, so
the authors used Euler’s method instead. The matrices A and B are shown in Equa-
tion E-9.

Equation E-8. Continuous and discrete time dynamics for HiPPO-LegS

wm:%Amn+%wm

1

kBuk

1
hk= (1+EA)hk—1+

Equation E-9. Matrices A and B for HiPPO-LegS

_«/2n+ 142k+1 ifn >k

n+1
Al’lk: —(n+1) ifn=k Bn:,/2n+1
0 ifn<k

For HiPPO-LegT and HiPPO-LagT, the continuous time dynamics are the classical
LTI SSM dynamics (see Equation E-1), and the matrices are shown in Equation E-10

18 | Appendix E: State-Space Models (SSMs)

and Equation E-11. You can use ZOH (see Table E-1) to convert the SSM into a
discrete-time SSM.

Equation E-10. Matrices A and B for HiPPO-LegT

Ank= -

n—k i
l[(_l) (2n+1) ifn>k Bﬂ:%(2n+1)(—1)n

Wi2n+1 ifn<k

Equation E-11. Matrices A and B for HiPPO-LagT

-1ifn=k
A= B, =1

"o ifn<k M

So the HiPPO recipe is:

« Choose HiPPO-LegS, HiPPO-LegT, or HiPPO-LagT—whichever best fits your
task (e.g., HiPPO-LegT if only the recent past matters). Alternatively, you can
derive A and B for your own measure and polynomial basis if you are a math
whiz.

« Build a discrete-time LTI SSM using the corresponding matrices A and B.

o Use it as a memory storage for your deep neural network, much like LMU did.

In short, HiPPO generalized the ideas of LMU, adding more flexibility with the mea-
sure, and offering several powerful off-the-shelf HiPPO matrices.

So far, we have seen that SSMs are great to store a compressed memory of the input
history, but that’s just half of the story: SSMs can also process long sequences much
faster than transformers can, as we will see now.

The Convolutional Representation of LTI SSMs

The fact that an LTI SSM is entirely linear enables a neat mathematical trick known
since the 1960s: it’s possible to make it process entire sequences in parallel. To see
how, let’s unroll the SSM’s state step by step using h, = Ah,_, + Bu,. For simplicity, we
will assume that the inputs and outputs are scalars, and the state vector is initialized
to a zero vector. Let’s go:

h, = By,
h, = Ah; + Bu, = ABuy, + By,
h, = Ah, + Bu, = A(ABy, + Bu,) + Bu, = A’Bu, + ABu, + Bu,

h,=A"Bu, + A"'Bu, + ... + ABu,_, + Bu,

State-Space Models (SSMs) | 19

We can now compute the output vector y, = Ch, (assuming matrix D is zero). We
find:

y, = CA"Bu, + CA"'Bu, + ... + CABy, , + CBu,

This equation can actually be reformulated as a discrete convolution operation. Indeed,

if we define the kernel k = (CB,CAB,...,CA"~ 'B,CA"B), which is a sequence of L
scalars" (with L = n + 1), and u is the sequence of L scalar inputs (u, u,, ..., u,), then
¥, = k * u, where * is the discrete convolution operator (see Equation E-12). There-
fore, an LTI SSM can be seen either as a recurrent model, or as a convolutional
model.

Equation E-12. Discrete convolution

z,= (m*n), = %:mjni _

This dual representation (recurrent and convolutional) makes LTI SSMs efficient
both during inference and training. As a recurrent model, it’s very fast at inference
time, as it only considers the previous state and the current input: generating a
sequence of length L has a computational cost of O(L) at inference time, as opposed
to O(L?) for transformers. As a convolutional model, processing a sequence of length
L during training requires O(L-log(L)) computations (using an efficient implementa-
tion discussed shortly), versus O(L?) for transformers. Crucially, a convolutional
model is parallelizable.

Note that the kernel k has exactly the same length as the input sequence u. Usually,
convolutional neural networks (CNN) uses a small kernel, so it’s fairly easy to paral-
lelize, but it’s not the case here. Luckily, we can use yet another mathematical trick
involving the Fourier transform.

The Fourier Transform

The Fourier transform breaks down a signal (e.g., a sound wave) into its individual
frequencies. In other words, it changes the signal’s representation from the time
domain—showing how the signal’s amplitude changes over time—to the frequency
domain—showing the amplitude of each individual frequency. For each possible
angular frequency w (i.e., the frequency times 27), it outputs two amplitudes: one for
cos(wt) and one for sin(wt). For example, Figure E-9 shows a function that looks
rather complicated in the time domain (top left), but after a Fourier transform, we

—
—_

To be more precise, C is @ doutput X dstate MALriX, A is a dytate X dstate Matrix, and B is a dygage X dinpyt Matrix, so
all the elements of k are doytput X dinpur matrices. In our case, doutput = dinput = 1, s0 €ach elementisa 1 x 1
matrix, each containing a single scalar.

20 | Appendix E: State-Space Models (SSMs)

find that it’s just composed of two frequencies (right): one cosine wave of amplitude
1.0 at 3 Hz, and one sine wave of amplitude 0.4 at 7 Hz. These two waves are shown in
the lower left plot. The original wave is simply their sum.

Time Domain Frequency Domain
1o 1.0 4 —— cos amplitude
% sin amplitude
=]
= 004 0.8
Q.
€
< 1.0
' B 0.6
. . . . ; — 3
0.0 0.2 0.4 0.6 0.8 10 =
0 £
1.0 4
S 044
[_
3 o5
=]
2
= 0.0 ' 0.2 4
o
g 051 —— cos 3 Hz
sin 7 Hz
-10 A T T T T T — T OO T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10
Time [s] Frequency [Hz]

Figure E-9. A complicated-looking function (top left) and the result of its Fourier trans-
form (right) showing that the function is just the sum of a cosine wave and a sine wave
of different frequencies and amplitudes (lower left).

There’s an interesting parallel with the LMU: just as the LMU SSM projects the input
function onto a basis of orthogonal Legendre polynomials, the Fourier transform
projects a function f(t) onto a basis of orthogonal functions cos(wt) and sin(wt) of all
possible angular frequencies w, giving a coefficient for each cosine and sine function.

The Fourier transform can also be generalized to complex-valued functions: in this

case, the complex-valued function f(t) is projected onto the basis of functions e’ =

cos(wt) + isin(wt), and the coefficient F(w) for each frequency w is also a complex
number. Most implementations of the Fourier transform use this generalized
approach, including PyTorch’s implementation. In fact, you will get complex coefti-
cients even when the input function f(t) is real-valued. In this case, if you prefer to
deal with coefficients of cosines and sines, then it’s not too difficult to do the conver-
sion: assuming the complex coefficient for the angular frequency w is F(w) = a + bi,
the cosine coefficient is 2a, and the sine coefficient is —2b.

It's possible to show that a convolution in the time domain is equivalent to an item-
wise multiplication in the frequency domain'?, so we can apply the Fast Fourier

12 See this post by Ulf Bissbort for the proof.

State-Space Models (SSMs) | 21

https://homl.info/convproof

Transform (FFT)" to convert both the kernel k and the input sequence u to the fre-
quency domain, then perform an itemwise multiplication (which is parallelizable) in
the frequency domain, and finally convert the result back to the time domain using
the Inverse FFT (IFFT).

Let’s implement two functions to compute the same convolution: the first using the
F.convid() function in the time domain, and the second using itemwise multiplica-
tion in the frequency domain:

import as
from import rfft, irfft

def convolution_in_time_domain(k, u):
B, d, L = u.shape # B = batch size, d = input/output dim, L = seq. length
u_padded = F.pad(u, (L - 1, 0)) # pad left; shape (B, d, L + L - 1)
k_flipped = k.flip(dims=[-1]).unsqueeze(1l) # shape (d, 1, L)
y = F.convld(u_padded, k_flipped, groups=d) # shape (d, 1, L)
return y

def convolution_1in_frequency_domain(k, u):
B, d, L = u.shape
L+L -1
= rfft(u, n=n) # shape (B, d, n)
= rfft(k, n=n) # shape (B, d, n)
= u_f * k_f.unsqueeze(0) # shape (B, d, n)
irfft(y_f, n=n)[..., :L] # shape (B, d, L)
return y

n
u_
k_
v
y

I = = = Il
|

There are a few things to note in this code:

 Both functions accept a kernel of shape (d, L) and an input of shape (B, d, L),
where B is the batch size, d is the number of parallel SSMs (one per input chan-
nel), and L is the sequence length.

o The first function starts by padding the input sequence with L - 1 zeros, which
ensures that the model is causal. Next, we flip the kernel: this is because the
F.convid() function actually implements a mathematical operation named
cross-correlation, which is just like convolution except the kernel is flipped. In
regular CNNs, we can ignore this fact because the kernel is trainable, which
means gradient descent can learn the appropriate flipped kernel. But when we
want to perform a proper mathematical convolution using a given kernel, we
must flip this kernel before calling the F.convid() function. Lastly, we set
groups=d when calling F.conv1d() to ensure that each of the d sequences are
processed independently (one per SSM).

13 The FFT is a fast algorithm for the discrete Fourier transform, which scales as O(L-log(L)) instead of O(L?) for
the naive discrete Fourier Transform.

22 | Appendix E: State-Space Models (SSMs)

o In the second function, we start by calling the torch.fft.rfft() function on the
input and the kernel. This performs real-valued FFT (the torch.fft.fft() func-
tion performs complex-valued FFT, but our inputs are real numbers). We specify
the desired sequence lengthn = L + L - 1, so the rfft() function automati-
cally takes care of padding the input with L - 1 zeros. Next, we compute the item-
wise multiplication of the input and kernel in the frequency domain. Lastly, we
call torch.fft.irfft() to perform the real-valued inverse FFT, and we crop the
result to keep only the valid part of the result (the last L — 1 elements are not
causal).

You can try generating a batch of random input sequences, and a random kernel, and
verify that both functions return the same result (with only tiny differences due to
floating point errors).

The most computationally expensive part of the convolutional representation of LTI
SSMs is evaluating the kernel k = (CA"B, CA™'B, ..., CAB, CB). Itss not a big prob-
lem if these matrices are fixed, since we can precompute the kernel up to the maxi-
mum input sequence length, then reuse it for any new input sequence, cropping it to
the sequence length. In fact, making B and C trainable is doable, we just need A to be
fixed since the most expensive step is computing all the powers of A (although stor-
ing these powers can take up a lot of RAM).

But what if we want to give the model the ability to optimize matrix A during train-
ing? If we naively make A trainable, then it will change during training, so we will
need to recompute k at each training iteration: this would be so slow that it would
completely cancel out the speed boost that the convolutional representation offered.
Luckily, there is a solution: enter S4.

Efficiently Modeling Long Sequences with Structured
SSMs (54)

An efficient mathematical trick was found by Albert Gu, Karan Goel, and Christo-
pher Ré and published in a 2021 paper titled “Efficiently Modeling Long Sequences
with Structured State Spaces” (or S4 for short):** it makes it possible to learn the
parameters of the continuous-time matrix A (and derive the discrete-time matrix A
from it), while still benefiting from the convolutional speed boost.

The core idea is to express the continuous-time matrix A as the sum of a diagonal
matrix A (lambda) and a low-rank matrix R = -PQ’". This is called the diagonal plus

14 Albert Gu et al., “Efficiently Modeling Long Sequences with Structured State Spaces”, arXiv preprint arXiv:
2111.00396 (2021).

State-Space Models (SSMs) | 23

https://homl.info/s4

low rank (DPLR) technique. All three matrices A, P, and Q are complex-valued, and
Q' is the conjugate transpose’® of Q. The matrix A has a shape of d,,. X dy. (full of
zeros except on the main diagonal), while P and Q both have a shape of d,,. x 1,
where r is small, typically r = 1 or 2.

Instead of training a full d,. x d,. matrix, we only train the DPLR components A, P,
and Q. This ensures that the matrix A preserves its desirable structure, close to a
diagonal matrix. This particular structure enables some mathematical shortcuts to
efficiently compute the kernel k at each training iteration, by directly computing it in
the frequency domain: this removes the need to explicitly compute all of the powers
of A (see part 3 of the paper for the mathematical details).

There are two important points to note:

+ S4’s SSM matrices are initialized using the HiPPO-LegS matrices A and B: this
gives the model an excellent starting point for training. To be more precise, the
matrices A, P, and Q are derived from the HiPPO-LegS matrix A such that A = A
- PQ'. Note that the HiPPO-LegS matrices were designed for an LTV SSM, as we
saw earlier, but we're using them in an LTT SSM. That’s fine because we're only
using these matrices as a good starting point for training.

« S4 converts the continuous-time matrix A to the discrete-time matrix A using the
bilinear method, shown in Equation E-13. Like the other discretization methods,
the bilinear method involves a small time increment A, which the model learns
during training; in fact, S4 learns one such parameter for each input channel,
allowing it to learn the appropriate time scale for each.

Equation E-13. Bilinear method to discretize an SSM

T AN A

K= (1-34) {r54)

— A\l

B= (I -5) AB
The authors implemented their ideas in the S4 model, which was the first SSM-based
model to outperform transformers on several tasks involving long-range dependen-
cies. In particular, it beat the state of the art on the Long Range Arena (LRA) bench-
marks. Its architecture resembles a decoder-only transformer (see Figure E-10), but

without positional encoding (SSMs don’t need them), and replacing the multi-head
attention layers with S4 blocks. An S4 block is composed of the structured SSM

15 Transpose the matrix and flip the sign of the imaginary part of each complex number in the matrix; for exam-
ple 2 + 3i becomes 2 - 3i.

24 | Appendix E: State-Space Models (SSMs)

https://homl.info/lra
https://homl.info/lra

described so far—usually with the addition of a trainable matrix D (i.e., a learnable
skip connection)—along with a feedforward block (e.g., using a linear layer and an
activation function such as GELU), and usually also some dropout, layer normaliza-
tion, and skip connections (not shown in the figure). This architecture can then be
used just like a decoder-only transformer; for example, you can add an embedding
layer at the bottom, and a classification head at the top, and you get a model that you
can use for text generation.

N N S N
S4 Block (GELU)
: [Linear
[T T 1 [
= Bloes o GELU)
S4 Block \ 1T | J
! u,u u, u u u

Figure E-10. The S4 model

If you want to build your own custom S4 models, you can use the
S4Block class available in the official source code of S4.

In a later iteration of S4, the matrix Q was replaced with P, giving A = A - PP". This
tweak stabilized training. Then, in March 2022, Ankit Gupta et al. published the diag-
onal state spaces (DSS) paper' showing that it’s actually possible to drop the low-rank
part and keep only the diagonal matrix A. This led to the S4D model”, which slightly
outperformed S4 while being both simpler and faster.

At this point, the ML community was getting really excited about SSMs: they have a
strong theoretical foundation that dates back to the 1960s, they have an excellent
memory thanks to the HiPPO-LegS initialization, they are fast both during training

16 Ankit Gupta et al., “Diagonal State Spaces are as Effective as Structured State Spaces”, arXiv preprint arXiv:
2203.14343 (2022).

17 Albert Gu et al., “On the Parameterization and Initialization of Diagonal State Space Models’, arXiv preprint
arXiv:2206.11893 (2022).

State-Space Models (SSMs) | 25

https://homl.info/s4code
https://homl.info/dss
https://homl.info/dss
https://homl.info/s4d

using the convolutional representation, and during inference using the recurrent rep-
resentation, and they can flexibly be embedded into simple neural net architectures
that resemble existing transformer architectures.

However, the SSMs we discussed so far have one major flaw: the transition matrices
do not depend on the inputs. As a result, all inputs are treated equally by the SSM. In
contrast, transformers can learn to ignore unimportant inputs; this gives them a sig-
nificant advantage. This explains why S4 only beats transformers on tasks with long-
range dependencies, where transformers struggle. For shorter input sequences,
transformers still outperform S4.

This leads us to the last SSM-based neural network architecture in this appendix,
which tackled this problem head-on by letting the model select the inputs to memo-
rize.

Mamba: Linear-Time Sequence Modeling with Selective
State Spaces

Tri Dao (author of FlashAttention, FlashAttention-2, and HiPPO) and Albert Gu
(author of HiPPO, S4, and S$4D), struck again in December 2023 with the ground-
breaking SSM-based Mamba model,'® sometimes called $6." This was the first model
to match or exceed the performance of state-of-the-art transformers of the same size
on language modeling tasks. In some cases, it even matched transformers twice as
large. Since Mamba is essentially a sophisticated recurrent neural network, it's quite a
comeback for RNNs!?

Just like S4, Mamba uses single-input single-output SSMs, each independently pro-
cessing one input channel and producing one output channel. The main innovation
in Mamba is the fact that the SSM matrices B and C are input-dependent: this allows
the model to control which inputs should be stored in the SSM’s state at each step
(using B), and which parts of the state should be extracted (using C). Moreover, A is
also input-dependent: just like in S4, it contains one time increment A per input
channel, and it is used to discretize the corresponding SSM; letting the model control
A allows it to choose which input channels to focus on, depending on the inputs.

18 Albert Gu, Tri Dao, “Mamba: Linear-Time Sequence Modeling with Selective State Spaces’, arXiv preprint
arXiv:2312.00752 (2023).

19 There are 6 S’s: Sequences and Structured State Spaces (same as in S4), plus Selective and Scan, as we will see
shortly.

20 RNNs were declared resurrected in the 2023 paper by Antonio Orvieto et al., “Resurrecting Recurrent Neural
Networks for Long Sequences’, arXiv preprint arXiv:2303.06349 (2023).

26 | Appendix E: State-Space Models (SSMs)

https://homl.info/resurrect
https://homl.info/mamba

For discretization, Mamba computes A = exp(4A) and B = AB.
That's ZOH for A and Euler’s method for B. This hybrid approach
is faster to compute and more stable during training than using
ZOH for both A and B. Moreover, since A is a diagonal matrix, we
can just use the itemwise exponential operation when computing
A: this gives the same result as with a matrix exponential, only
much faster.

Mamba’s architecture is composed of a stack of Mamba blocks, plus layer-norm
before each block and a skip connection after each block (see the lefthand side of
Figure E-11). There are usually extra layers before the first block (such as an embed-
ding layer for language models), and extra layers after the last block (such as a classi-
fication head); these are not shown in the figure. Many Mamba variants replace every
other Mamba block with a feedforward neural network (FFN), or with a multihead
attention (MHA) layer (see the center and righthand side of Figure E-11).

!
—

LayerNorm
<N ‘ MambaI block ’ N <N
‘ LayerNorm ’ Mamba block Mamba block

|7

| LayerNorm LayerNorm

(. J (& J
Mamba Mamba / FFN Mamba / Transformer
(original) Hybrid Hybrid

Figure E-11. Mamba and its FEN and transformer variants

Now let’s zoom in on the Mamba block (see Figure E-12). In this figure, B is the batch
size, L is the sequence length, d, 4 is the number of input channels to the Mamba
block, d,,,, is the number of input channels to the SSMs, and d_,,. is the state size (the
last three are shortened to d,,, d, and d, in the figure, respectively). I have shown the
actual tensor shapes used in Mamba’s implementation, rather than focusing on a sin-
gle instance and a single time step. This should make it clear when data is shared
across dimensions. For example, the tensor D has a shape of d,,., (noted d; in the fig-

mner

ure): since there’s no B or L dimension, we can tell that this tensor contains one

State-Space Models (SSMs) | 27

matrix D (actually just a scalar) per SSM (since there’s one SSM per input channel),
but for each SSM this matrix D is shared across all instances and all time steps. Let’s
start with the right half of the figure:

The input X represents a batch of input sequences; it’s a tensor of shape [B, L,
dmodel]'

The input follows two parallel paths: the main path goes through a linear layer, a
convolutional layer, the SiLU activation function, and lastly the SSM; the other
path goes through a linear layer and a SiLU activation function. Then the outputs
of both paths are multiplied itemwise. This is a gating mechanism similar to the
one used in the SwiGLU activation function (see Chapter 11): it allows the model
to control which parts of the output matter most. The result then goes through a
final linear layer to produce the output.

Notice that the input layers* expand the dimensionality by a factor of E (which
defaults to 2), and the output layer reduces the dimensionality back to d,, 4. The
inner dimensionality d,,., is equal to E x d,, 4. This expansion gives the model
more flexibility. Most of the Mamba block’s parameters are in these input and
output layers.

It is important to understand that the linear layers focus only on the last dimen-
sion, just like in a transformer. In other words, all sequences in the batch and all
of their tokens are treated independently and in parallel. Conversely, the SSM
and the convolutional layer focus only on the sequence dimension: all instances
in the batch and all input channels are treated independently and in parallel. It’s
as if there were an independent SSM and an independent convolutional layer for
each instance and each input channel, all running in parallel, each processing a
1D input sequence.

The Mamba block is causal, since the SSM is naturally causal (it
only depends on the current state and inputs), the convolutional
layer uses causal padding (i.e., left padding equal to the kernel size
minus one), and the other layers ignore the sequence dimension.

21 Mamba implements these two layers using a single linear layer with twice the output size, followed by a split
operation: this is more efficient than running two separate linear layers. Similarly, the linear layers that pro-
duce B and C, and the bottom linear layer on the path to A, are actually all combined into one linear layer
plus a split operation.

28

Appendix E: State-Space Models (SSMs)

Y (B,L,d)

A
B L, d
mamba block D(d) / Linear (5 Lm)d)
Alog-(di’ d) Param. g
(Param.}—{-exp] A(d, d,) I_—]:

B|(BLd)C

Linea™ Lin

U BLd) |z

SiLU
Example:
d =1024 Kemelsize = 4 4| Convid | ([siLU *
d=2xd Padding =3 (left)[” Linear Linear,
%= 16 Groups = d

|
|
*
Computed within the fused GPU kernel X (B, L d)

m

Figure E-12. The Mamba block

Now let’s focus on the left part of Figure E-12, starting with A:

o Just like in S4D, each SSM’s matrix A is constrained to be diagonal, so we only
need to store d,,, diagonal terms for each SSM. Since there are d,,,., independent
SSMs, we represent all of their A matrices using a tensor of shape d, ., X dy,. (but
keep in mind that in theory each matrix A is a diagonal matrix of shape d,. x
dstate)'

« To ensure that the SSMs remain stable during training, we need matrix A to con-
tain only negative terms on the diagonal, as this makes the state decay over time
rather than explode. To guarantee that the terms remain negative during training,
we don't train A directly: instead, we train a parameter A,,, and we compute A =
—exp(Ajpg)-

o The A,,, parameter is initialized using [log(1), log(2), log(3), ..., log(d.)] for
each row (i.e., for each SSM). This ensures that each diagonal matrix A uses the

State-Space Models (SSMs) | 29

same initialization scheme as the real-valued variant of $S4D, with [-1.0, -2.0, -3.0,
..» —dyye) in its diagonal. This is a simplified variant of HiPPO-LegS diagonal
initialization.

Next, let’s look at matrices B, C, and A, which are all input-dependent:

o The SSM’s input tensor U is passed to linear layers that produce the SSM tensors
B, C, and A. For A, instead of using a linear layer with d,,,, inputs and d,,,,., out-
puts, which would be huge, we use two consecutive linear layers where the first
reduces the dimensionality by a factor of 16 (it’s a bottleneck layer), while the sec-
ond restores the original dimensionality. Mamba still has a lot of flexibility to
model A, but this technique significantly reduces the number of parameters and

computations, while also acting as a regularizer and stabilizing training.

« Notice that B, C, and A have a batch dimension (B) and a sequence dimension
(L): whereas previous SSMs used the same matrices at each time step, regarless of
the inputs (they were linear time-invariant), Mamba is linear time-variant (LTV)
and input-dependent, so we have different matrices for each instance and each
time step.

« Also note that B and C are shared across input channels: their shape is [B, L,
Ayael>, DOt [B, L, diperr dyue]- However, A uses a separate time scale (a scalar) per
input channel.

o The time scales must be positive (time can only go forward), which is why we use
the softplus activation function when outputting A.

Lastly, the parameter D is fully trainable, with one scalar per SSM. This matrix pro-
vides a skip connection around the SSM, with a trainable scale for each input chan-
nel.

And there you have it! You now know how to build Mamba from scratch. However, a
naive implementation would be horrendously slow because we cannot use S4’s convo-
lutional representation trick. Indeed, this trick only works with linear time-invariant
SSMs, but Mamba uses linear time-variant SSMs. Luckily, the Mamba authors pro-
vided an alternative solution to speed up Mamba’s SSMs: they implemented an opti-
mized GPU kernel based on the scan operation.

To understand the scan operation (also called the parallel prefix or prefix sum), lets
first focus on a simple use case: given a list of n numbers [z, z, z,, ..., z,_;], we want
to compute the cumulative sum of its elements, [zy, 2, + 21, 2y + 2, + 23, .., 29 + 2, + 2,
+ ...+ z,,]. For example, given the list [3, 1, 5,9, 7, 8, 2, 4], we want to return 3, 4, 9,
18, 25, 33, 35, 39]. The scan operation can do this in just three steps (see Figure E-13):

« In the first step, it computes the sum of all consecutive pairs. Crucially, all sums
can be performed in parallel.

30 | Appendix E: State-Space Models (SSMs)

o Once this first step is finished, the algorithm can take the resulting list and com-
pute the sum of every pair of numbers located two indices apart.

o Again, all sums are performed in parallel. In the next step, the algorithm sums
elements located four indices apart (if there were more element, we would keep
doubling the distance at each step).

And we're done! This algorithm performs 2n + 1 sums (instead of n — 1 in a naive
sequential implementation), but assuming there are more processors than elements in
the list, it only takes O(log(n)) time to run, instead of O(#n) in the naive implementa-
tion.

Step 1

Step 2 \

Step 3
8000 '

® = final result O = intermediate result

= keep \¢ = add

Figure E-13. Parallel scan for linear recurrences

Why does this help with SSMs? Well, the scan operation doesn’t just work with addi-
tion: it also works with any binary operation ©, as long as it is associative, meaning
that (a © b) © c = a ® (b ® c). Now consider the following binary operation ® which
takes two pairs as input, (A, v,) and (A}, v,), and outputs the pair (A Ay, A,v, + V).
It’s not too hard to verify that this operation is associative:

((Ko’ vy) © (Xl’ v)) © (Kp V,)

=(AJAL A, +v)© (KZ) v,)

=(AA AL AA vy +Vv) +V,)

= (ézéléo’ A_zA_lvo + Az‘ﬁ +V,)
= (AAA), (AyA)V, + (Ayv; +V,))
= (Ap vp) © (A,A, Ay, +V))

= (Km V) © ((Kp V) © (Kz, V)

State-Space Models (SSMs) | 31

Now let’s see what happens if we apply a scan operation on a sequence of pairs [(A,
Vo), (A, V), ..., (A, v,)], using the binary operator ® we just defined. We get the
following output pairs:

0, = (Km V(i o
0,=0,0 (A, v)=(AA, AV, +V)

0,=0, ,©(A,v)=AA, .. AA,AA, .. AAV,+AA, .. AAV +...+AyV,,
+v,

The second item of each o, looks very much like the output of an SSM; in fact, we
only need to multiply the inputs by B and the outputs by C, then add D, and were
done. So here’s the full process to efficiently compute the SSMs’ outputs:

1. Generate A, B, C, D, A as explained earlier (see Figure E-12). The tensors B, C, A
contain B, C;, A, for each time step k, for each SSM, and each instance in the
batch. The following steps are run in parallel for all SSMs and all instances.

2. Discretize A and B using A. As explained earlier, we can use ZOH to get A, and
Euler’s method to get B. The tensors A and B contain A, and B, for each time
step k.

3. Compute v, = B,y for each time step k, all in parallel.

4. Run the scan operation using the sequence of pairs [(KO, Vo), A,v), ..., (A, v,)]
to obtain the cumulative result o, for each time step k.

5. Drop the first element of each o, and compute the SSM’s outputs: y, = C,o, + D
for each time step k (in parallel).

The Mamba authors developed an optimized GPU kernel that fuses steps 2 to 5 (and
it also takes care of adding the bias term of the second linear layer that produces A):
this avoids materializing large intermediate tensors and drastically reduces the
amount of memory transfers, much like FastAttention (see Chapter 17). If the input
sequence doesn’t fit in the GPU’ high-performance memory, then it is split into
chunks. This optimized GPU kernel runs 20 to 40 times faster than a pure PyTorch
implementation.

32 | Appendix E: State-Space Models (SSMs)

Mamba-2%* was released in May 2024, improving Mamba’s speed by
a factor of 2 to 8.

Using Mamba

If you want to try out SSMs, many pretrained models are available via the Hugging
Face Transformers library and can be used just like regular transformers (see Chapter
15). For example, the following code downloads a small version of Mamba and uses it
to generate some text:

from transformers import AutoTokenizer, AutoModelForCausallLM

model_id = "state-spaces/mamba-790m-hf" # or mamba-2.8b if it fits on your GPU
model = AutoModelForCausallLM.from_pretrained(model_1id)

tokenizer = AutoTokenizer.from_pretrained(model_1id)

input_text = "State space models are"

inputs = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**inputs, max_length=50) # the usual generation API
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

This code will default to a slow sequential implementation, unless

you install the causal-convld and mamba-ssm libraries, which pro-

] vide GPU kernels for the causal 1D convolution and for Mamba’s

\ selective SSM (discussed earlier), respectively. At the time of writ-
ing, this only works on Linux using an Nvidia GPU with CUDA
11.6+.

If you want to create your own custom Mamba model and train it from scratch, you
can create a custom MambaConfig object and create a MambaForCausalLM model based
on this config, for example:

from transformers import MambaConfig, MambaForCausallLM

custom_config = MambaConfig(# a tiny toy Mamba model
vocab_size=1000,
hidden_size=64, # d_model
num_hidden_layers=4, # number of Mamba blocks
state_size=8, # d _state
conv_kernel_size=4, # the Convid layer's kernel size
expansion_factor=2, # the expansion factor E

)

tiny_mamba = MambaForCausallLM(config=custom_config)

22 Tri Dao, Albert Gu, “Transformers are SSMs: Generalized Models and Efficient Algorithms Through Struc-
tured State Space Duality”, arXiv preprint arXiv:2405.21060 (2024).

State-Space Models (SSMs) | 33

https://homl.info/mamba2

If you have installed the mamba-ssm library, then you can even build your own cus-
tom models based on the Mamba or Mamba2 block:

from import Mamba # or Mamba2

mamba_block = Mamba(d_model=32, d_state=16, d_conv=4, expand=2)

Congratulations, you have made it through this difficult appendix! Don't worry if you
didn’t grasp everything on the first read. It took me quite a while to really understand
SSMs: just persevere and things will gradually fall into place.

34 | Appendix E: State-Space Models (SSMs)

	Copyright
	Table of Contents
	Chapter 17. Speeding Up Transformers
	Faster Decoding at Inference Time
	Key/Value Caching
	Speculative Decoding
	Main Approaches to Parallelize Decoding

	Speeding Up Multi-Head Attention
	Sparse Attention
	Approximate Attention
	Sharing Projections Across Attention Heads
	FlashAttention: A Fast and Accurate Attention Implementation

	Scaling Up with Mixture of Experts
	The Mixture of Experts Layer
	Benefits of MoE
	The Challenges of MoEs

	Faster Training
	Parameter-Efficient Fine-Tuning (PEFT)
	Activation Checkpointing
	Sequence Packing and Bucketing
	Gradient Accumulation
	Speeding Up Training Using Parallelism

	Exercises

	Appendix A. App A
	Appendix B. App B
	Appendix C. Support Vector Machines
	Linear SVM Classification
	Soft Margin Classification

	Nonlinear SVM Classification
	Polynomial Kernel
	Similarity Features
	Gaussian RBF Kernel
	SVM Classes and Computational Complexity

	SVM Regression
	Under the Hood of Linear SVM Classifiers
	The Dual Problem
	Kernelized SVMs

	Exercises

	Appendix D. Relative Positional Encoding
	Relative Position Encodings (RPE)
	Rotary Position Embeddings (RoPE)
	Attention with Linear Biases (ALiBi)

	Appendix E. State-Space Models (SSMs)
	Traditional SSMs
	Viewing Functions as Vectors⁠7Many thanks to Ulf Bissbort who reviewed this appendix and wrote this excellent post (https://homl.info/functionspace), which inspired much of this section.
	Legendre Memory Unit (LMU)
	The HiPPO Framework
	The Convolutional Representation of LTI SSMs
	Efficiently Modeling Long Sequences with Structured SSMs (S4)
	Mamba: Linear-Time Sequence Modeling with Selective State Spaces
	Using Mamba

	Appendix F. Other Popular ANN Architectures
	Hopfield Networks
	Boltzmann Machines
	Restricted Boltzmann Machines
	Deep Belief Nets
	Self-Organizing Maps

