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APPENDIX D

Relative Positional Encoding

Transformers struggle with long sequences. As we saw in Chapter 15, they suffer from
the quadratic attention problem: the computational and memory cost of processing
a sequence increases quadratically with the sequence length, so transformers are
painfully slow and memory hungry for long input sequences. Luckily, this problem
can be alleviated using the techniques discussed in Chapters 16 and 17: in fact,
many modern transformer architectures can handle extremely long sequences of
thousands, or even hundreds of thousands of tokens (or more).

However, speed and memory usage aren’t the only problems: transformers are not
very accurate for long input sequences either. This might be a bit surprising: you may
expect a transformer to be more accurate when given extra information; but that’s not
what happens, at least for very long sequences. There are a couple reasons for this:

• Firstly, the training set naturally contains more tokens at small positions than at•
large positions, since all sequences contain the former, but only long sequences
contain the latter. Therefore, when using positional encodings based on the
absolute position of each token, the model just doesn’t get as much training on
tokens located at large positions. Moreover, at inference time, it cannot easily
extrapolate to longer sequences than the longest one in the training set.

• Secondly, it’s easier to find relevant information in a short document than in a•
long one. Admittedly, this is true for humans as well, but we humans have a
very useful locality bias: we assume that nearby words are generally more relevant
than distant words; in practice, this assumption is usually correct. However, the
transformer has no such inductive bias (i.e., a bias baked into its architecture);
it has to learn this fact during training. If it doesn’t learn perfectly, then it will
be distracted by far away tokens when processing each sentence: the larger the
sequence, the more unrelated tokens will distract the transformer.
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1 Peter Shaw et al., “Self-Attention with Relative Position Representations”, arXiv preprint arXiv:1803.02155
(2018).

The positional encoding (PE) techniques discussed in this appendix address both
issues: they are relative PEs, meaning that they only care about the relative distan‐
ces between tokens rather than their absolute positions. For example, the relative
distance between the query token at position i = 10 and the key token at position j
= 6 is r = i – j = –4. Since relative PE techniques only focus on the relative distance,
they don’t care whether a token is located at position 10 or 10,000, or whether the
sequence is short or long. This addresses the first issue: the model cares just as much
about all tokens, and it’s also easier to extrapolate to longer sequences than those seen
during training.

Moreover, using relative PEs introduces the helpful locality bias, since the model will
see much more nearby pairs than distant pairs during training. Indeed, in a sequence
of length 100, there are 198 pairs of tokens with relative distance +1 or –1 (i.e., the
pairs whose query token is just next to the key token), but only two pairs of tokens
with relative distance +99 or –99. Moreover, only large sequences contain pairs of
tokens that have a large relative distance.

In this appendix, we will discuss three of the main relative PE techniques used today:

• Relative Position Encodings (RPE)•
• Rotary Position Embeddings (RoPE)•
• Attention with Linear Biases (ALiBi)•

All three methods get rid of the absolute PEs that the original Transformer archi‐
tecture adds to the input embeddings before entering the first transformer block.
Instead, RPE, RoPE, and ALiBi tweak the scaled dot-product attention equation
to ensure that the output depends on the relative positions between token pairs.
However, they all do so in different ways, as we will see. Let’s start with RPE.

Relative Position Encodings (RPE)
RPE is the original relative PE method proposed in 2018 by Google researchers Peter
Shaw et al.1 In short, it adds trainable relative position embeddings to the key and
value tokens when computing the scaled dot-product attention. Let’s see exactly how.

The authors reasoned that the exact relative distance matters less when two tokens
are very far away from each other, so they decided to clamp the relative distances to
a predefined range from –rmax to +rmax (typically rmax = 128). If the relative distance
between two tokens is higher than rmax or lower than –rmax, then their relative distance
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r is clamped to rmax or –rmax, respectively. Figure D-1 shows the relative distances
between each pair of query and key tokens, clamped using a tiny rmax = 4.

Figure D-1. Relative distance between each pair of query and key tokens, clamped to
±rmax (e.g., ±4)

With that in mind, RPE adds two trainable embedding matrices AK and AV to each
MHA layer. In both matrices, each row is an embedding that represents a possible
relative distance r ranging from –rmax to +rmax, so there are 2rmax – 1 embeddings
in each matrix (e.g., the first row represents the relative distance –rmax, the second
represents –rmax + 1, and so on). The dimensionality of each embedding in AK is dk,
which is the key’s dimensionality, and the dimensionality of each embedding in AV

is dv, which is the value’s dimensionality (in most transformer architectures, dk = dv).
Now let’s see how these embeddings are actually used.

Firstly, when computing the attention score ei,j for the ith query token qi and the jth key
token kj, the embedding for the relative position r = i – j from matrix AK, denoted
aK

i–j, is added to the key token kj. In other words, instead of computing the usual
scaled dot product ei,j = qi · kj / dk, RPE computes ei,j = qi · (kj + ai–j) / dk. Once
we have computed the attention score for all query/token pairs, we can compute the
attention weights αi,j normally using the softmax function.

Secondly, when computing the output oi for the ith query token, instead of calculating
the usual weighted sum of value tokens, oi = ∑j = 1

Lk αi,jvj, we add a relative position

embedding aV
i–j to each value vector: oi = ∑j = 1

Lk αi,j vj + ai − j
V . Note that this embed‐

ding comes from the second matrix AV.

The RPE authors showed that this method significantly improves model accuracy,
especially for long sequences. However, they remarked that the second embedding
(the one from matrix AV that is added to vj) didn’t seem to help, so later relative PE
techniques all dropped this idea.

Relative Positional Encoding | 3



2 Zihang Dai et al., “Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context”, arXiv
preprint arXiv:1901.02860 (2019).

In January 2019, other Google researchers released the Transformer-XL architecture,2

which uses a variant of RPE that learns the content-to-content relationships (i.e., the
usual QK⊺ term), as well as content-to-position, position-to-content, and position-
to-position relationships, all separately. This architecture got impressive results on
many benchmarks, and it particularly shines on long sequences. However, it’s more
complex and requires more parameters, so researchers looked for simpler solutions.

In October 2019, yet another team of Google researchers released the T5 architecture
(introduced in Chapter 15), which greatly simplified the RPE method: instead of
introducing two embeddings in the attention equation, their method adds a single
learnable bias (a scalar) to each attention score, depending on the relative position.
This bias-based RPE method computes the attention scores like this: ei,j = qi · kj / dk
+ bi–j, where bi–j is the learnable bias for the relative position r = i – j. That’s a nice and
simple solution, it adds much fewer parameters, and it runs significantly faster than
the original RPE method (often called full-embedding RPE or just full RPE), while
even performing better.

Let’s implement bias-based RPE in PyTorch. For example, we can tweak the Multihea
dAttention class we defined in Chapter 15. The first step is to add a parameter for
the biases in the constructor:

class MultiheadAttentionWithBiasRPE(nn.Module):
    def __init__(self, embed_dim, num_heads, dropout=0.1, r_max=128):
        [...]  # the rest of the constructor is unchanged
        self.biases = nn.Parameter(torch.zeros(num_heads, 2 * r_max - 1))
    [...]  # the rest of the class is unchanged for now

Notice the new argument r_max, which defines the maximum relative distance (any
larger distance will be clamped). There are 2rmax – 1 possible relative distances. Notice
that our biases parameter contains one set of biases for each attention head: indeed,
bias-based RPE does not usually share biases across attention heads or MHA layers.
All the biases are initialized to zero.

Next, let’s create a method that will take Lq and Lk (the length of the query and key,
respectively), and it will create a tensor of shape [h, Lq, Lk] containing the appropriate
bias for each pair of query and key token positions, depending on their relative
distance. The output tensor (which I will call b) will contain many repetitions, since
all pairs of tokens with the same relative distance have the same bias. For example,
b[0, 4, 10] is equal to b[0, 5, 11] and b[0, 6, 12], and so on. However, b[0,
4, 10] is not equal to b[2, 4, 10], since these biases are for two different attention
heads.
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3 Jianlin Su et al., “RoFormer: Enhanced Transformer with Rotary Position Embedding”, arXiv preprint
arXiv:2104.09864 (2021).

    def gather_biases(self, Lq, Lk):
        h, n_biases = self.biases.shape  # [h, 2 * r_max - 1]
        r_max = (n_biases + 1) // 2
        pos_q = torch.arange(Lq, device=self.biases.device)  # [0, ..., Lq - 1]
        pos_k = torch.arange(Lk, device=self.biases.device)  # [0, ..., Lk - 1]
        rel_pos = pos_q[:, None] - pos_k[None, :]  # [Lq, Lk] (contains i - j)
        rel_pos = rel_pos.clamp(-r_max + 1, r_max - 1) + r_max - 1  # [Lq, Lk]
        return self.biases[:, rel_pos]  # [h, Lq, Lk]

This method creates two tensors pos_q and pos_k containing all the query
and key positions, respectively. It then uses broadcasting (pos_q[:, None] -

pos_k[None, :]) to compute an Lq × Lk matrix containing the relative distance for
each pair of query and key positions. We then clamp these relative distances to the
range –rmax to +rmax (so at this stage rel_pos looks like Figure D-1), and we add rmax –
1 because the rows in the bias table are indexed from 0 to 2rmax – 1 rather than from
–rmax to rmax. Lastly, we fetch all the biases from the biases parameter, for each pair of
query and key position. This kind of complex indexing and broadcasting is often the
most confusing part when looking at relative PE code.

Finally, we’re ready to tweak the forward() method to add the gathered biases to the
attention scores:

    def forward(self, query, key, value):
        [...]  # the rest is unchanged
        scores = q @ k.transpose(2, 3) / self.d**0.5  # (B, h, Lq, Lk)
        b = self.gather_biases(query.size(-2), key.size(-2))  # (h, Lq, Lk)
        scores = scores + b
        [...]  # the rest is unchanged

And that’s all, our modified multi-head attention class is ready to be used!

FlashAttention (introduced in Chapter 17) does not currently sup‐
port passing arbitrary attention biases, so it cannot be used along
with RPE.

Now let’s turn to the next relative PE technique: RoPE.

Rotary Position Embeddings (RoPE)
RoPE was proposed in April 20213 by a team of researchers from the Chinese AI
company Zhuiyi Technology. Surprisingly, this method works without adding any
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4 The angle between k′ and q is α – 5θ, and the angle between q and q′ is 19θ. If we add both angles, we get α′ =
α – 5θ + 19θ = α + (19 – 5)θ.

parameters to the model: it just rotates each query token and each key token by an
angle proportional to its absolute position.

Its absolute position? How can this be a relative PE technique if it’s based on absolute
positions? Well, let’s pretend the tokens live in 2D space, and consider a query token
q at position 19, and a key token k at position 5. Figure D-2 shows how the query
token gets rotated by an angle of 19θ and becomes q′, while the key token gets rotated
by an angle of 5θ and becomes k′ (we’ll come back to the increment angle θ shortly).
Let’s call α the angle between k and q, and α′ the angle between k′ and q′. If you look
carefully at this diagram,4 you will see that α′ = α + (19 – 5)θ. That’s where the relative
distance r = i – j comes in: α′ = α + rθ.

Figure D-2. RoPE

Why does this matter? Well, recall that the attention equation computes the dot
product q′·k′, which is equal to q′·k′ = cos(α′)×∥q′∥×∥k′∥: that’s the cosine of α′ times
the length of each vector. Since rotating a vector doesn’t affect its length, we have
∥q′∥ = ∥q∥ and ∥k′∥ = ∥k∥, so putting everything together we obtain q′·k′ = cos(α
+ rθ)×∥q∥×∥k∥. Without RoPE, we would have computed q·k = cos(α)×∥q∥×∥k∥
instead. As you can see, the only difference is that RoPE adds rθ to the angle α. The
absolute positions play no role, they have vanished, and we are left with a tweak that
only depends on the relative distance between the tokens. Isn’t that pretty?

However, this trick only works in 2D space, but the tokens are high-dimensional.
This is why RoPE groups the token dimensions into pairs, forming 2D subspaces,
then it rotates each subspace. Moreover, it uses a different angle θk for each subspace
k: the RoPE authors proposed using θk = B–2k/d where the base B is a constant (typi‐
cally equal to 10,000), and d is the dimensionality of the token. This equation makes
θk smaller and smaller as k increases, so the first subspaces will get more rotations
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per position increment than the last subspaces. Therefore, the first subspaces will be
useful to model nearby relationships between tokens, while the last will be good for
distant relationships.

Let’s implement RoPE in PyTorch. First, we will define a function that precomputes
all the cosines and sines of angles pθk for each possible pair of absolute position p and
subspace k:

def precompute_rope_cos_sin(d, max_len, base=10_000):
    theta = base ** (-torch.arange(0, d, 2).float() / d)  # θₖ, shape: [d // 2]
    positions = torch.arange(max_len)  # p, shape: [max_len]
    freqs = torch.outer(positions, theta)  # p * θₖ, shape: [max_len, d // 2]
    freqs_twice = freqs.repeat_interleave(2, dim=-1)  # shape: [max_len, d]
    return freqs_twice.cos(), freqs_twice.sin()  # shape: both [max_len, d]

d, max_len = 64, 4_096
cos_theta, sin_theta = precompute_rope_cos_sin(d, max_len)

We could compute these values on the fly to avoid setting a maximum sequence
length, but the transformer would be significantly slower. Instead, we can use a large
maximum length, since the memory cost isn’t too bad.

Going Beyond the Maximum Sequence Length
When a transformer imposes a maximum length, it’s still possible to force it to
process longer sequences.

The simplest way to do that (other than cropping the sequence) is to linearly interpo‐
late the token positions to the allowed range. This is called position interpolation. For
example, if the maximum length is 4,096 but we want to process a sequence of length
5,000, we can divide each position by s = 5,000 / 4,096, rounding down. This techni‐
que works with any transformer that imposes a maximum sequence length (including
the original Transformer). Unfortunately, quality drops as the input sequence gets
longer.

When using RoPE, a much better approach is to use NTK-Aware Scaled RoPE,
proposed in 2023 by user bloc97 in a Reddit post: it works by scaling the base B
by a factor λ = s2/(d–2), where s is the sequence length divided by the maximum
length (just like in position interpolation), and d is the dimensionality. For example,
if the input sequence has 5,000 tokens and the maximum length is 4,096, and d =
64, then λ ≈ 1.0065, therefore B = 10,000λ = 10,065. This technique has proven to
work extremely well, making it possible to process much longer sequences than the
maximum sequence length.

Relative Positional Encoding | 7
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At the time of writing, one of the best RoPE variants is YaRN,5 which tweaks the
base B like NTK-Aware Scaled RoPE, and combines it with position interpolation,
while also scaling the attention score to counteract the loss of precision that can occur
during interpolation.

Next, let’s define the function that will apply RoPE to a given tensor. This implemen‐
tation rotates all of the 2D subspaces simultaneously, for every token in the tensor,
across all sequences in the batch, and all attention heads. To understand how this
works, first note that rotating a 2D vector (x, y) by an angle θ produces the vector
(xcos(θ) – ysin(θ), ycos(θ) + xsin(θ)). If we focus on a single token t located at
position p, we can treat its vector components as a sequence of 2D coordinates: t =
(x0, y0, x1, y1, …). Then we can create a copy and tweak it to get t′ = (–y0, x0, –y1, x1,
…), and finally compute t ⊗ cos + t′ ⊗ sin where cos and sin are the precomputed
cosines and sines. This will give us the desired result, where every subspace is rotated
by the appropriate angle: (x0cos(pθ0) – y0sin(pθ0), y0cos(pθ0) + x0sin(pθ0), x1cos(pθ1) –
y1sin(pθ1), y1cos(pθ1) + x1sin(pθ1), …).

def rope_rotation(t, cos_theta, sin_theta):
    t_grouped = t.reshape(*t.shape[:-1], -1, 2)  # group pairs of dims
    t_swapped = t_grouped[..., [1, 0]]  # swap 2D axes: (x, y) -> (y, x)
    t_swapped[..., 0] *= -1  # for each pair, (y, x) -> (–y, x)
    t_rotated_half = t_swapped.flatten(start_dim=-2)  # [-y0, x0, -y1, x1,...]
    L = t.size(-2)
    return t * cos_theta[:L] + t_rotated_half * sin_theta[:L]  # same shape as t

Let’s apply RoPE to a query and key:

batch_size, n_heads, Lq, Lk, d = 32, 8, 800, 800, 64
Q = torch.randn(batch_size, n_heads, Lq, d)
K = torch.randn(batch_size, n_heads, Lk, d)
Q_rope = rope_rotation(Q, cos_theta, sin_theta)
K_rope = rope_rotation(K, cos_theta, sin_theta)

Alternatively, you can use an off-the-shelf implementation, such as
LlamaRotaryEmbedding in the Hugging Face Transformers library,
or RotaryEmbedding from the rotary-embedding-torch library.

Combining relative PE techniques with sparse attention or approximate attention
techniques can be a bit tricky. For example, using RoPE along with multi-head latent
attention (MLA) and KV caching (see Chapter 17) is not trivial. Indeed, the KV cache
stores the latent key/value input LKV and recomputes the full projected key K and
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6 Ofir Press et al., “Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation”,
arXiv preprint arXiv:2108.12409 (2021).

value V (including the past tokens) each time we generate a new token. We could
apply RoPE to K and V on the fly, but it would be computationally expensive. So
instead, the MLA authors proposed a way to keep the content and position informa‐
tion separate. This allows them to calculate a lightweight positional score based on
the new token’s query position relative to all previous key positions, avoiding the
expensive re-computation.

In short, RoPE has many advantages: it doesn’t use any extra parameters, it’s fairly
fast to compute (especially when precomputing the cosines and sines), it’s compatible
with FlashAttention, and it gives excellent results. It is currently the most popular
positional encoding method along with ALiBi.

Attention with Linear Biases (ALiBi)
ALiBi was proposed in August 2021 by Ofir Press et al.6 Just like bias-based RPE,
ALiBi adds a single bias to each attention score depending on the relative distance
between tokens. However, unlike bias-based RPE (but just like RoPE), ALiBi doesn’t
use any trainable parameters at all. Indeed, the bias is computed using the equation:
ba,i,j = –ma|i – j|, where a is the attention head, i and j are the positions of the
query and key tokens, and ma is the slope used in the attention head a. The authors
proposed using the slope ma = 2–8a/h, where h is the total number of attention heads,
and a is 1-indexed. For example, the first attention head in an 8-head model uses
the slopes m1 = 1/2, m2 = 1/4, …, m8 = 1/256. As you can see, the bias simply
decreases linearly as tokens get further away from each other (hence the name of this
method). Since each attention head uses a different slope ma, some heads focus on
local relationships while others focus on distant relationships.

The following function generates the ALiBi biases for a given number of heads and
a given sequence length. The output tensor has a shape of [n_heads, seq_len,
seq_len]:

def get_alibi_biases(n_heads, seq_len):
    head = torch.arange(1, n_heads + 1, dtype=torch.float32)  # shape: [n_heads]
    slopes = torch.pow(2, -8 * head / n_heads)  # [n_heads]
    pos = torch.arange(seq_len)  # [seq_len]
    distance_matrix = -(pos[None, :] - pos[:, None]).abs()  # [seq_len, seq_len]
    return slopes.view(-1, 1, 1) * distance_matrix

Let’s compute the biases for an 8-head model and a sequence of 4 tokens, and look at
the biases for the first attention head:

>>> biases = get_alibi_biases(n_heads=8, seq_len=4)
>>> biases[0]
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tensor([[ 0.0000, -0.5000, -1.0000, -1.5000],
        [-0.5000,  0.0000, -0.5000, -1.0000],
        [-1.0000, -0.5000,  0.0000, -0.5000],
        [-1.5000, -1.0000, -0.5000,  0.0000]])

That’s all! Now you can just add the biases to the attention scores, just like we did
with bias-based RPE.

The flash-attn library offers optimized FlashAttention-2 kernels for
RoPE and ALiBi.

So when should you use Bias RPE, RoPE, or ALiBi? In a nutshell, Bias RPE is still
common and performs well, especially when the input sequences have a fixed size;
however, this technique does not extrapolate well beyond the maximum sequence
length, and it does not work with FlashAttention. As a result, most modern trans‐
formers use either RoPE or ALiBi instead. For the highest quality, RoPE is usually the
best choice. However, ALiBi is better at extrapolating to longer sequences: this allows
you to “train short, test long”. That said, things are moving quickly!

To conclude, Table D-1 compares the regular scaled dot-product attention equation
with each of the equations used with the relative PEs discussed in this appendix.

Table D-1. Attention score equation depending on the positional encoding method used

Method Attention score ei,j Output oi
Regular qi · k j

dk
∑ j = 1
Lk αi, jv j

RPE (full) qi · k j + ai − j
K

dk

∑ j = 1
Lk αi, j v j + ai − j

V

RPE (bias) qi · k j
dk

+ b j − i ∑ j = 1
Lk αi, jv j

RoPE R iθ qi · R jθ k j
dk

∑ j = 1
Lk αi, jv j

ALiBi qi · k j
dk

+ ma · i − j ∑ j = 1
Lk αi, jv j
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