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APPENDIX C
Support Vector Machines

A support vector machine (SVM) is a powerful and versatile machine learning model,
capable of performing linear or nonlinear classification, regression, and even novelty
detection. SVMs shine with small to medium-sized nonlinear datasets (i.e., hundreds
to thousands of instances), especially for classification tasks. However, they don’t scale
very well to very large datasets, as you will see.

This chapter will explain the core concepts of SVMs, how to use them, and how they
work. Let’s jump right in!

Linear SVM Classification

The fundamental idea behind SVMs is best explained with some visuals. Figure C-1
shows part of the iris dataset that was introduced at the end of Chapter 4. The two
classes can clearly be separated easily with a straight line (they are linearly separable).
The left plot shows the decision boundaries of three possible linear classifiers. The
model whose decision boundary is represented by the dashed line is so bad that it
does not even separate the classes properly. The other two models work perfectly
on this training set, but their decision boundaries come so close to the instances
that these models will probably not perform as well on new instances. In contrast,
the solid line in the plot on the right represents the decision boundary of an SVM
classifier; this line not only separates the two classes but also stays as far away from
the closest training instances as possible. You can think of an SVM classifier as
fitting the widest possible street (represented by the parallel dashed lines) between the
classes. This is called large margin classification.
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Figure C-1. Large margin classification

Notice that adding more training instances “off the street” will not affect the decision
boundary at all: it is fully determined (or “supported”) by the instances located on the
edge of the street. These instances are called the support vectors (they are circled in
Figure C-1).

SVMs are sensitive to the feature scales, as you can see in Fig-
ure C-2. In the left plot, the vertical scale is much larger than the
horizontal scale, so the widest possible street is close to horizontal.
After feature scaling (e.g., using Scikit-Learn’s StandardScaler),
the decision boundary in the right plot looks much better.
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Figure C-2. Sensitivity to feature scales

Soft Margin Classification

If we strictly impose that all instances must be off the street and on the correct
side, this is called hard margin classification. There are two main issues with hard
margin classification. First, it only works if the data is linearly separable. Second, it is
sensitive to outliers. Figure C-3 shows the iris dataset with just one additional outlier:
on the left, it is impossible to find a hard margin; on the right, the decision boundary
ends up very different from the one we saw in Figure C-1 without the outlier, and the
model will probably not generalize as well.
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Figure C-3. Hard margin sensitivity to outliers

To avoid these issues, we need to use a more flexible model. The objective is to find a
good balance between keeping the street as large as possible and limiting the margin
violations (i.e., instances that end up in the middle of the street or even on the wrong
side). This is called soft margin classification.

When creating an SVM model using Scikit-Learn, you can specify several hyperpara-
meters, including the regularization hyperparameter C. If you set it to a low value,
then you end up with the model on the left of Figure C-4. With a high value, you get
the model on the right. As you can see, reducing C makes the street larger, but it also
leads to more margin violations. In other words, reducing C results in more instances
supporting the street, so there’s less risk of overfitting. But if you reduce it too much,
then the model ends up underfitting, as seems to be the case here: the model with
C=100 looks like it will generalize better than the one with C=1.
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Figure C-4. Large margin (left) versus fewer margin violations (right)

If your SVM model is overfitting, you can try regularizing it by
reducing C.

The following Scikit-Learn code loads the iris dataset and trains a linear SVM classi-
fier to detect Iris virginica flowers. The pipeline first scales the features, then uses a
LinearSVC with C=1:
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from import load_iris

from import make_pipeline
from import StandardScaler
from import LinearSVC

iris = load_iris(as_frame=True)
X = iris.data[["petal length (cm)", "petal width (cm)"]].values
y = (iris.target == 2) # Iris virginica

svm_clf = make_pipeline(StandardScaler(),
LinearSVC(C=1, random_state=42))
svm_clf.fit(X, y)

The resulting model is represented on the left in Figure C-4.
Then, as usual, you can use the model to make predictions:

>>> X_new = [[5.5, 1.7], [5.0, 1.5]]

>>> svm_clf.predict(X_new)

array([ True, False])
The first plant is classified as an Iris virginica, while the second is not. Let’s look at
the scores that the SVM used to make these predictions. These measure the signed
distance between each instance and the decision boundary:

>>> svm_clf.decision_function(X_new)
array([ 0.66163816, -0.22035761])

Unlike LogisticRegression, LinearSVC doesn't have a predict_proba() method to
estimate the class probabilities. That said, if you use the SVC class (discussed shortly)
instead of LinearSVC, and if you set its probability hyperparameter to True, then
the model will fit an extra model at the end of training to map the SVM decision
function scores to estimated probabilities. Under the hood, this requires using 5-fold
cross-validation to generate out-of-sample predictions for every instance in the train-
ing set, then training a LogisticRegression model, so it will slow down training
considerably. After that, the predict_proba() and predict_log_proba() methods
will be available.

Nonlinear SVM Classification

Although linear SVM classifiers are efficient and often work surprisingly well, many
datasets are not even close to being linearly separable. One approach to handling
nonlinear datasets is to add more features, such as polynomial features (as we did in
Chapter 4); in some cases this can result in a linearly separable dataset. Consider the
lefthand plot in Figure C-5: it represents a simple dataset with just one feature, x,.
This dataset is not linearly separable, as you can see. But if you add a second feature
%, = (x)% the resulting 2D dataset is perfectly linearly separable.

4 | Appendix C: Support Vector Machines
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To implement this idea using Scikit-Learn, you can create a pipeline containing
a PolynomialFeatures transformer (discussed in Chapter 4), followed by a Stand
ardScaler and a LinearSVC classifier. Let’s test this on the moons dataset, a toy
dataset for binary classification in which the data points are shaped as two inter-
leaving crescent moons (see Figure C-6). You can generate this dataset using the

make_moons () function:

from sklearn.datasets import make_moons
from sklearn.preprocessing import PolynomialFeatures

XJ y =

polynomial_svm_clf = make_pipeline(
PolynomialFeatures(degree=3),
StandardScaler(),
LinearSVC(C=10, max_1iter=10_000, random_state=42)
)
polynomial_svm_clf.fit(X, y)

make_moons(n_samples=100, noise=0.15, random_state=42)

Support Vector Machines
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Figure C-6. Linear SVM classifier using polynomial features

Polynomial Kernel

Adding polynomial features is simple to implement and can work great with all sorts
of machine learning algorithms (not just SVMs). That said, at a low polynomial
degree this method cannot deal with very complex datasets, and with a high polyno-
mial degree it creates a huge number of features, making the model too slow.

Fortunately, when using SVMs you can apply an almost miraculous mathematical
technique called the kernel trick (which is explained later in this chapter). The kernel
trick makes it possible to get the same result as if you had added many polynomial
features, even with a very high degree, without actually having to add them. This
means there’s no combinatorial explosion of the number of features. This trick is
implemented by the SVC class. Let’s test it on the moons dataset:

from import SVC

poly_kernel_svm_clf = make_pipeline(StandardScaler(),
SVC(kernel="poly", degree=3, coef0=1, C=5))

poly_kernel_svm_clf.fit(X, y)
This code trains an SVM classifier using a third-degree polynomial kernel, repre-
sented on the left in Figure C-7. On the right is another SVM classifier using a
10th-degree polynomial kernel. Obviously, if your model is overfitting, you might
want to reduce the polynomial degree. Conversely, if it is underfitting, you can try
increasing it. The hyperparameter coef@ controls how much the model is influenced
by high-degree terms versus low-degree terms.

6 | Appendix C: Support Vector Machines
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Figure C-7. SVM classifiers with a polynomial kernel

Although hyperparameters will generally be tuned automatically
(e.g., using randomized search), it’s good to have a sense of what
each hyperparameter actually does and how it may interact with
other hyperparameters: this way, you can narrow the search to a
much smaller space.

Similarity Features

Another technique to tackle nonlinear problems is to add features computed using a
similarity function, which measures how much each instance resembles a particular
landmark, as we did in Chapter 2 when we added the geographic similarity features.
For example, let’s take the 1D dataset from earlier and add two landmarks to it at
x; = -2 and x; = 1 (see the left plot in Figure C-8). Next, we'll define the similarity
function to be the Gaussian RBF with y = 0.3. This is a bell-shaped function varying
from 0 (very far away from the landmark) to 1 (at the landmark).

Now we are ready to compute the new features. For example, let’s look at the instance
x, = —1: it is located at a distance of 1 from the first landmark and 2 from the second
landmark. Therefore, its new features are x, = exp(-0.3 x 1?) = 0.74 and x; = exp(-0.3
x 2%) = 0.30. The plot on the right in Figure C-8 shows the transformed dataset
(dropping the original features). As you can see, it is now linearly separable.

Support Vector Machines | 7
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Figure C-8. Similarity features using the Gaussian RBF

You may wonder how to select the landmarks. The simplest approach is to create a
landmark at the location of each and every instance in the dataset. Doing that creates
many dimensions and thus increases the chances that the transformed training set
will be linearly separable. The downside is that a training set with m instances and
n features gets transformed into a training set with m instances and m features
(assuming you drop the original features). If your training set is very large, you end
up with an equally large number of features.

Gaussian RBF Kernel

Just like the polynomial features method, the similarity features method can be useful
with any machine learning algorithm, but it may be computationally expensive to
compute all the additional features (especially on large training sets). Once again the
kernel trick does its SVM magic, making it possible to obtain a similar result as if you
had added many similarity features, but without actually doing so. Let’s try the SVC
class with the Gaussian RBF kernel:

rbf_kernel_svm_clf = make_pipeline(StandardScaler(),

SVC(kernel="rbf", gamma=5, C=0.001))

rbf_kernel_svm_clf.fit(X, y)
This model is represented at the bottom left in Figure C-9. The other plots show
models trained with different values of hyperparameters gamma (y) and C. Increasing
gamma makes the bell-shaped curve narrower (see the lefthand plots in Figure C-8).
As a result, each instance’s range of influence is smaller: the decision boundary ends
up being more irregular, wiggling around individual instances. Conversely, a small
gamma value makes the bell-shaped curve wider: instances have a larger range of influ-
ence, and the decision boundary ends up smoother. So y acts like a regularization
hyperparameter: if your model is overfitting, you should reduce y; if it is underfitting,
you should increase y (similar to the C hyperparameter).

8 | Appendix C: Support Vector Machines
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Figure C-9. SVM classifiers using an RBF kernel

Other kernels exist but are used much more rarely. Some kernels are specialized
for specific data structures. String kernels are sometimes used when classifying text
documents or DNA sequences (e.g., using the string subsequence kernel or kernels
based on the Levenshtein distance).

With so many kernels to choose from, how can you decide
which one to use? As a rule of thumb, you should always try
the linear kernel first. The LinearSVC class is much faster than
SVC(kernel="1inear"), especially if the training set is very large.
If it is not too large, you should also try kernelized SVMs, starting
with the Gaussian RBF kernel; it often works really well. Then, if
you have spare time and computing power, you can experiment
with a few other kernels using hyperparameter search. If there are
kernels specialized for your training sets data structure, make sure
to give them a try too.

Support Vector Machines | 9



SVM Classes and Computational Complexity

The LinearSVC class is based on the liblinear library, which implements an opti-
mized algorithm for linear SVMs.! It does not support the kernel trick, but it scales
almost linearly with the number of training instances and the number of features.
Its training time complexity is roughly O(m x n). The algorithm takes longer if you
require very high precision. This is controlled by the tolerance hyperparameter ¢
(called tol in Scikit-Learn). In most classification tasks, the default tolerance is fine.

The SVC class is based on the libsvm library, which implements an algorithm that
supports the kernel trick.? The training time complexity is usually between O(m?* x
n) and O(m* x n). Unfortunately, this means that it gets dreadfully slow when the
number of training instances gets large (e.g., hundreds of thousands of instances), so
this algorithm is best for small or medium-sized nonlinear training sets. It scales well
with the number of features, especially with sparse features (i.e., when each instance
has few nonzero features). In this case, the algorithm scales roughly with the average
number of nonzero features per instance.

The SGDClassifier class also performs large margin classification by default, and
its hyperparameters—especially the regularization hyperparameters (alpha and pen
alty) and the learning_rate—can be adjusted to produce similar results as the
linear SVMs. For training it uses stochastic gradient descent (see Chapter 4), which
allows incremental learning and uses little memory, so you can use it to train a model
on a large dataset that does not fit in RAM (i.e., for out-of-core learning). Moreover,
it scales very well, as its computational complexity is O(m x n). Table C-1 compares
Scikit-Learn’s SVM classification classes.

Table C-1. Comparison of Scikit-Learn classes for SVM classification

Class Time complexity Out-of-core support Scaling required ~ Kernel trick
LinearsvC 0(m % n) No Yes No
SVC 0(m*x n)to O(m* x n) No Yes Yes
SGDClassifier O(mxn) Yes Yes No

Now let’s see how the SVM algorithms can also be used for linear and nonlinear
regression.

1 Chih-Jen Lin et al., “A Dual Coordinate Descent Method for Large-Scale Linear SVM”, Proceedings of the 25th
International Conference on Machine Learning (2008): 408-415.

2 John Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines”
(Microsoft Research technical report, April 21, 1998).
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SVM Regression

To use SVMs for regression instead of classification, the trick is to tweak the objec-
tive: instead of trying to fit the largest possible street between two classes while
limiting margin violations, SVM regression tries to fit as many instances as possible
on the street while limiting margin violations (i.e., instances off the street). The width
of the street is controlled by a hyperparameter, ¢. Figure C-10 shows two linear SVM
regression models trained on some linear data, one with a small margin (¢ = 0.5) and
the other with a larger margin (e = 1.2).
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Figure C-10. SVM regression

Reducing ¢ increases the number of support vectors, which regularizes the model.
Moreover, if you add more training instances within the margin, it will not affect the
model’s predictions; thus, the model is said to be e-insensitive.

You can use Scikit-Learn’s LinearSVR class to perform linear SVM regression. The
following code produces the model represented on the left in Figure C-10:

from import LinearSVR

X, y=1[...1 #a linear dataset
svm_reg = make_pipeline(StandardScaler(),
LinearSVR(epsilon=0.5, random_state=42))

svm_reg.fit(X, y)
To tackle nonlinear regression tasks, you can use a kernelized SVM model. Fig-
ure C-11 shows SVM regression on a random quadratic training set, using a second-
degree polynomial kernel. There is some regularization in the left plot (i.e., a small C
value), and much less in the right plot (i.e., a large C value).
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Figure C-11. SVM regression using a second-degree polynomial kernel

The following code uses Scikit-Learn’s SVR class (which supports the kernel trick) to
produce the model represented on the left in Figure C-11:

from import SVR

X, y=1[...] # a quadratic dataset
svm_poly_reg = make_pipeline(StandardScaler(),
SVR(kernel="poly", degree=2, C=0.01, epsilon=0.1))

svm_poly_reg.fit(X, y)
The SVR class is the regression equivalent of the SVC class, and the LinearSVR class is
the regression equivalent of the LinearSVC class. The LinearSVR class scales linearly
with the size of the training set (just like the LinearSVC class), while the SVR class gets
much too slow when the training set grows very large (just like the SVC class).

SVMs can also be used for novelty detection, as you saw in Chapter
8.

The rest of this chapter explains how SVMs make predictions and how their training
algorithms work, starting with linear SVM classifiers. If you are just getting started
with machine learning, you can safely skip this and go straight to the exercises
at the end of this chapter, and come back later when you want to get a deeper
understanding of SVMs.
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Under the Hood of Linear SVM Classifiers

A linear SVM classifier predicts the class of a new instance x by first computing the
decision function 0" x = 6, x, + --- + 0, x,, where X is the bias feature (always equal to
1). If the result is positive, then the predicted class y is the positive class (1); otherwise
it is the negative class (0). This is exactly like LogisticRegression (discussed in
Chapter 4).

Up to now, I have used the convention of putting all the model
parameters in one vector 0, including the bias term 6, and the
input feature weights 0, to 0,. This required adding a bias input
Xy = 1 to all instances. Another very common convention is to
separate the bias term b (equal to 0,) and the feature weights vector
w (containing 0, to 0,). In this case, no bias feature needs to be
added to the input feature vectors, and the linear SVM’s decision
function is equal to wT x + b = w; x; + --- + w, x,, + b. I will use this
convention throughout the rest of this book.

So, making predictions with a linear SVM classifier is quite straightforward. How
about training? This requires finding the weights vector w and the bias term b that
make the street, or margin, as wide as possible while limiting the number of margin
violations. Let’s start with the width of the street: to make it larger, we need to make
w smaller. This may be easier to visualize in 2D, as shown in Figure C-12. Let’s define
the borders of the street as the points where the decision function is equal to -1 or +1.
In the left plot the weight w, is 1, so the points at which w, x; = -1 or +1 are x, = -1
and +1: therefore the margin’s size is 2. In the right plot the weight is 0.5, so the points
at which w, x, = -1 or +1 are x; = -2 and +2: the margin’s size is 4. So, we need to
keep w as small as possible. Note that the bias term b has no influence on the size of
the margin: tweaking it just shifts the margin around, without affecting its size.

W1=1 W1=0.5

«——+— Margin

Figure C-12. A smaller weight vector results in a larger margin
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We also want to avoid margin violations, so we need the decision function to be
greater than 1 for all positive training instances and lower than -1 for negative
training instances. If we define #? = -1 for negative instances (when y = 0) and ¢ =
1 for positive instances (when y® = 1), then we can write this constraint as (w7 x? +
b) > 1 for all instances.

We can therefore express the hard margin linear SVM classifier objective as the

constrained optimization problem in Equation C-1.

Equation C-1. Hard margin linear SVM classifier objective

. 1
minimize —wlw
w,b 2

subject to t(i)(wa(i) + b) >1 fori=1.2,-,m

We are minimizing % wT w, which is equal to %|| w ||?, rather than
minimizing || w || (the norm of w). Indeed, %|| w || has a nice,
simple derivative (it is just w), while || w || is not differentiable
at w = 0. Optimization algorithms often work much better on
differentiable functions.

To get the soft margin objective, we need to introduce a slack variable {’ > 0 for each
instance:® ("’ measures how much the i instance is allowed to violate the margin.
We now have two conflicting objectives: make the slack variables as small as possible
to reduce the margin violations, and make % wT w as small as possible to increase
the margin. This is where the C hyperparameter comes in: it allows us to define the
trade-off between these two objectives. This gives us the constrained optimization
problem in Equation C-2.

Equation C-2. Soft margin linear SVM classifier objective
. 1 S ()
minimize —wiw+C ), (
w,b,( 2 i=1

subject to t(i)(wa(i) + b) >1- C(i) and C(i) >0 for¢=12,-,m

The hard margin and soft margin problems are both convex quadratic optimization
problems with linear constraints. Such problems are known as quadratic program-

3 Zeta ({) is the sixth letter of the Greek alphabet.
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ming (QP) problems. Many off-the-shelf solvers are available to solve QP problems by
using a variety of techniques that are outside the scope of this book.*

Using a QP solver is one way to train an SVM. Another is to use gradient descent to
minimize the hinge loss or the squared hinge loss (see Figure C-13). Given an instance
x of the positive class (i.e., with ¢t = 1), the loss is 0 if the output s of the decision
function (s = W™ x + b) is greater than or equal to 1. This happens when the instance
is off the street and on the positive side. Given an instance of the negative class (i.e.,
with ¢ = -1), the loss is 0 if s < —1. This happens when the instance is off the street
and on the negative side. The further away an instance is from the correct side of the
margin, the higher the loss: it grows linearly for the hinge loss, and quadratically for
the squared hinge loss. This makes the squared hinge loss more sensitive to outliers.
However, if the dataset is clean, it tends to converge faster. By default, LinearSVC uses
the squared hinge loss, while SGDClassifier uses the hinge loss. Both classes let you
choose the loss by setting the loss hyperparameter to "hinge" or "squared_hinge".
The SVC class’s optimization algorithm finds a similar solution as minimizing the
hinge loss.

Hinge loss = max(0,1 —st) Squared Hinge loss
7 T
% \ [/
2 ,/ 7
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’ 1 / — t=1
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R = — /| —— = —
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s=w'x+b s=w'x+b

Figure C-13. The hinge loss (left) and the squared hinge loss (right)

Next, we'll look at yet another way to train a linear SVM classifier: solving the dual
problem.

The Dual Problem

Given a constrained optimization problem, known as the primal problem, it is possi-
ble to express a different but closely related problem, called its dual problem. The
solution to the dual problem typically gives a lower bound to the solution of the

4 To learn more about quadratic programming, you can start by reading Stephen Boyd and Lieven Vandenber-
ghe’s book Convex Optimization (Cambridge University Press) or watching Richard Brown’s series of video
lectures.
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primal problem, but under some conditions it can have the same solution as the
primal problem. Luckily, the SVM problem happens to meet these conditions,’ so you
can choose to solve the primal problem or the dual problem; both will have the same
solution. Equation C-3 shows the dual form of the linear SVM objective. If you are
interested in knowing how to derive the dual problem from the primal problem, see
the extra material section in this appendix’s notebook.

Equation C-3. Dual form of the linear SVM objective

a 17=1 7

minimize %12 jz a0 — Z ald)

. m . .
subject to ol > 0 forall i = 1,2,...,mand Y. a4 = g
i=1

Once you find the vector a that minimizes this equation (using a QP solver), use

Equation C-4 to compute the w and b that minimize the primal problem. In this
equation, n, represents the number of support vectors.

Equation C-4. From the dual solution to the primal solution
wo 3 a0
i=1

Z)\:

1
Ng

The dual problem is faster to solve than the primal one when the number of training
instances is smaller than the number of features. More importantly, the dual problem
makes the kernel trick possible, while the primal problem does not. So what is this
kernel trick, anyway?

Kernelized SVMs

Suppose you want to apply a second-degree polynomial transformation to a two-
dimensional training set (such as the moons training set), then train a linear SVM

5 The objective function is convex, and the inequality constraints are continuously differentiable and convex
functions.
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classifier on the transformed training set. Equation C-5 shows the second-degree
polynomial mapping function ¢ that you want to apply.

Equation C-5. Second-degree polynomial mapping

$12

= \/i L1

1522

Notice that the transformed vector is 3D instead of 2D. Now let’s look at what
happens to a couple of 2D vectors, a and b, if we apply this second-degree polynomial
mapping and then compute the dot product® of the transformed vectors (see Equa-
tion C-6).

Equation C-6. Kernel trick for a second-degree polynomial mapping
a12 T blz

p@)pd) =2aa| |[V2hb|= alzblz +2a1byazby + 622522

a2 b
N
a) \b
How about that? The dot product of the transformed vectors is equal to the square of
the dot product of the original vectors: ¢(a)T ¢(b) = (a™ b)2.

= (aby + azby)” = = (aTh)’

Here is the key insight: if you apply the transformation ¢ to all training instances,
then the dual problem (see Equation C-3) will contain the dot product ¢(x?)T ¢(x?).
But if ¢ is the second-degree polynomial transformation defined in Equation C-5,

then you can replace this dot product of transformed vectors simply by (X(i)Tx(j))z.
So, you don’t need to transform the training instances at all; just replace the dot
product by its square in Equation C-3. The result will be strictly the same as if you
had gone through the trouble of transforming the training set and then fitting a linear
SVM algorithm, but this trick makes the whole process much more computationally
efficient.

6 As explained in Chapter 4, the dot product of two vectors a and b is normally denoted as a - b. However, in
machine learning, vectors are frequently represented as column vectors (i.e., single-column matrices), so the
dot product is achieved by computing aTb. To remain consistent with the rest of the book, we will use this
notation here, ignoring the fact that this technically results in a single-cell matrix rather than a scalar value.
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The function K(a, b) = (a™ b)? is a second-degree polynomial kernel. In machine
learning, a kernel is a function capable of computing the dot product ¢(a)” ¢(b),
based only on the original vectors a and b, without having to compute (or even to
know about) the transformation ¢. Equation C-7 lists some of the most commonly
used kernels.

Equation C-7. Common kernels

Linear: K(a,
Polynomial:  K(a,

b
b
Gaussian RBF:  K(a,b
b

Sigmoid:  K(a,

Mercer’s Theorem

According to Mercer’s theorem, if a function K(a, b) respects a few mathematical
conditions called Mercer’s conditions (e.g., K must be continuous and symmetric in its
arguments so that K(a, b) = K(b, a), etc.), then there exists a function ¢ that maps a
and b into another space (possibly with much higher dimensions) such that K(a, b)
= ¢(a)T ¢(b). You can use K as a kernel because you know ¢ exists, even if you don’t
know what ¢ is. In the case of the Gaussian RBF kernel, it can be shown that ¢ maps
each training instance to an infinite-dimensional space, so it’s a good thing you don’t
need to actually perform the mapping!

Note that some frequently used kernels (such as the sigmoid kernel) don’t respect all
of Mercer’s conditions, yet they generally work well in practice.

There is still one loose end we must tie up. Equation C-4 shows how to go from
the dual solution to the primal solution in the case of a linear SVM classifier. But
if you apply the kernel trick, you end up with equations that include ¢(x”). In fact,
w must have the same number of dimensions as ¢(x”), which may be huge or even
infinite, so you can’t compute it. But how can you make predictions without knowing
w? Well, the good news is that you can plug the formula for w from Equation C-4
into the decision function for a new instance x, and you get an equation with only
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dot products between input vectors. This makes it possible to use the kernel trick
(Equation C-8).

Equation C-8. Making predictions with a kernelized SVM

heafole) = 97efs) 6 <[ £ 60050 o)+

i=1

5 (040) NTo(x™)) + b
A ()

1]
13

7

= 3 aVK(x0 M) + 5
=1

i=
&(Z) >0

Note that since a # 0 only for support vectors, making predictions involves comput-
ing the dot product of the new input vector x™ with only the support vectors, not all
the training instances. Of course, you need to use the same trick to compute the bias

term b (Equation C-9).

Equation C-9. Using the kernel trick to compute the bias term

m

b=l b (t(i) _WT(p(X(i))) Ly

m
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Ng ilzl '4=1
OIS a0

If you are starting to get a headache, that’s perfectly normal: it’s an unfortunate side
effect of the kernel trick.
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It is also possible to implement online kernelized SVMs, capable of
incremental learning, as described in the papers “Incremental and
Decremental Support Vector Machine Learning” and “Fast Kernel
Classifiers with Online and Active Learning”.® These kernelized
SVMs are implemented in Matlab and C++. But for large-scale
nonlinear problems, you may want to consider using random for-
ests (see Chapter 6) or neural networks (see Part II).

Exercises

1
2
3.
4

u

. What is the fundamental idea behind support vector machines?

. What is a support vector?

Why is it important to scale the inputs when using SVMs?

. Can an SVM classifier output a confidence score when it classifies an instance?

What about a probability?
How can you choose between LinearSVC, SVC, and SGDClassifier?

Say you've trained an SVM classifier with an RBF kernel, but it seems to underfit
the training set. Should you increase or decrease y (gamma)? What about C?

What does it mean for a model to be e-insensitive?

8. What is the point of using the kernel trick?

10.

11.

Train a LinearSVC on a linearly separable dataset. Then train an SVC and a
SGDClassifier on the same dataset. See if you can get them to produce roughly
the same model.

Train an SVM classifier on the wine dataset, which you can load using
sklearn.datasets.load_wine(). This dataset contains the chemical analyses
of 178 wine samples produced by 3 different cultivators: the goal is to train
a classification model capable of predicting the cultivator based on the wine’s
chemical analysis. Since SVM classifiers are binary classifiers, you will need to
use one-versus-all to classify all three classes. What accuracy can you reach?

Train and fine-tune an SVM regressor on the California housing dataset. You
can use the original dataset rather than the tweaked version we used in Chapter
2, which you can load using sklearn.datasets.fetch_california_housing().
The targets represent hundreds of thousands of dollars. Since there are over
20,000 instances, SVMs can be slow, so for hyperparameter tuning you should

7 Gert Cauwenberghs and Tomaso Poggio, “Incremental and Decremental Support Vector Machine Learning’,
Proceedings of the 13th International Conference on Neural Information Processing Systems (2000): 388-394.

8 An

toine Bordes et al., “Fast Kernel Classifiers with Online and Active Learning”, Journal of Machine Learning

Research 6 (2005): 1579-1619.

20 |

Appendix C: Support Vector Machines


https://homl.info/17
https://homl.info/17
https://homl.info/18
https://homl.info/18

use far fewer instances (e.g., 2,000) to test many more hyperparameter combina-
tions. What is your best model's RMSE?

Solutions to these exercises are available at the end of this appendix’s notebook, at

https://homl.info/colab-p.
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